Cargando…
Design and Analysis of a Radio-Frequency Moisture Sensor for Grain Based on the Difference Method
Grain moisture is one of the key indexes of grain quality, and acquiring an accurate moisture value is critical for grain storage security. However, the sensors used in the traditional methods for testing grain moisture are based on capacitance, microwave, or radio-frequency methods and still exhibi...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8234241/ https://www.ncbi.nlm.nih.gov/pubmed/34208717 http://dx.doi.org/10.3390/mi12060708 |
_version_ | 1783714038183624704 |
---|---|
author | Chen, Zhongxu Wu, Wenfu Dou, Jianpeng Liu, Zhe Chen, Kai Xu, Yan |
author_facet | Chen, Zhongxu Wu, Wenfu Dou, Jianpeng Liu, Zhe Chen, Kai Xu, Yan |
author_sort | Chen, Zhongxu |
collection | PubMed |
description | Grain moisture is one of the key indexes of grain quality, and acquiring an accurate moisture value is critical for grain storage security. However, the sensors used in the traditional methods for testing grain moisture are based on capacitance, microwave, or radio-frequency methods and still exhibit low accuracy and instability because they are susceptible to the temperature, moisture, and micro gas flow of the air in the granary. In this study, we employed a new design for a radio-frequency moisture sensor for grain. The structure of the sensor is based on the difference method and consists of two parallel probe units. These units are at different distances to the tested grain, resulting in different sensitivities in the moisture measurements. Through a phase difference operation on the test signals, the disturbance variable was reduced. The specific size of the two parallel probes was confirmed by calculation and simulation using High Frequency Structure Simulator (HFSS) software. The simulated and measured parameters of a prototype sensor agreed well. The linear relationship yielded a correlation coefficient of 0.9904, and the average error of the moisture testing was within ±0.3% under the conditions where the VSWR (voltage standing wave ratio) value and return losses were 1.5896 and −20 dB, respectively, at a measured central frequency of 100 MHz. The results indicate that the performance of the sensor was excellent. |
format | Online Article Text |
id | pubmed-8234241 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-82342412021-06-27 Design and Analysis of a Radio-Frequency Moisture Sensor for Grain Based on the Difference Method Chen, Zhongxu Wu, Wenfu Dou, Jianpeng Liu, Zhe Chen, Kai Xu, Yan Micromachines (Basel) Article Grain moisture is one of the key indexes of grain quality, and acquiring an accurate moisture value is critical for grain storage security. However, the sensors used in the traditional methods for testing grain moisture are based on capacitance, microwave, or radio-frequency methods and still exhibit low accuracy and instability because they are susceptible to the temperature, moisture, and micro gas flow of the air in the granary. In this study, we employed a new design for a radio-frequency moisture sensor for grain. The structure of the sensor is based on the difference method and consists of two parallel probe units. These units are at different distances to the tested grain, resulting in different sensitivities in the moisture measurements. Through a phase difference operation on the test signals, the disturbance variable was reduced. The specific size of the two parallel probes was confirmed by calculation and simulation using High Frequency Structure Simulator (HFSS) software. The simulated and measured parameters of a prototype sensor agreed well. The linear relationship yielded a correlation coefficient of 0.9904, and the average error of the moisture testing was within ±0.3% under the conditions where the VSWR (voltage standing wave ratio) value and return losses were 1.5896 and −20 dB, respectively, at a measured central frequency of 100 MHz. The results indicate that the performance of the sensor was excellent. MDPI 2021-06-16 /pmc/articles/PMC8234241/ /pubmed/34208717 http://dx.doi.org/10.3390/mi12060708 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Chen, Zhongxu Wu, Wenfu Dou, Jianpeng Liu, Zhe Chen, Kai Xu, Yan Design and Analysis of a Radio-Frequency Moisture Sensor for Grain Based on the Difference Method |
title | Design and Analysis of a Radio-Frequency Moisture Sensor for Grain Based on the Difference Method |
title_full | Design and Analysis of a Radio-Frequency Moisture Sensor for Grain Based on the Difference Method |
title_fullStr | Design and Analysis of a Radio-Frequency Moisture Sensor for Grain Based on the Difference Method |
title_full_unstemmed | Design and Analysis of a Radio-Frequency Moisture Sensor for Grain Based on the Difference Method |
title_short | Design and Analysis of a Radio-Frequency Moisture Sensor for Grain Based on the Difference Method |
title_sort | design and analysis of a radio-frequency moisture sensor for grain based on the difference method |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8234241/ https://www.ncbi.nlm.nih.gov/pubmed/34208717 http://dx.doi.org/10.3390/mi12060708 |
work_keys_str_mv | AT chenzhongxu designandanalysisofaradiofrequencymoisturesensorforgrainbasedonthedifferencemethod AT wuwenfu designandanalysisofaradiofrequencymoisturesensorforgrainbasedonthedifferencemethod AT doujianpeng designandanalysisofaradiofrequencymoisturesensorforgrainbasedonthedifferencemethod AT liuzhe designandanalysisofaradiofrequencymoisturesensorforgrainbasedonthedifferencemethod AT chenkai designandanalysisofaradiofrequencymoisturesensorforgrainbasedonthedifferencemethod AT xuyan designandanalysisofaradiofrequencymoisturesensorforgrainbasedonthedifferencemethod |