Cargando…
Improving Log-Likelihood Ratio Estimation with Bi-Gaussian Approximation under Multiuser Interference Scenarios
Accurate estimation of channel log-likelihood ratio (LLR) is crucial to the decoding of modern channel codes like turbo, low-density parity-check (LDPC), and polar codes. Under an additive white Gaussian noise (AWGN) channel, the calculation of LLR is relatively straightforward since the closed-form...
Autores principales: | Fu, Yu, Yang, Hongwen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8234328/ https://www.ncbi.nlm.nih.gov/pubmed/34203056 http://dx.doi.org/10.3390/e23060784 |
Ejemplares similares
-
Using a Neural Network to Approximate the Negative Log Likelihood Function
por: CMS Collaboration
Publicado: (2023) -
Design of Simplified Maximum-Likelihood Receivers for Multiuser CPM Systems
por: Bing, Li, et al.
Publicado: (2014) -
Gaussian Multiuser Wiretap Channels in the Presence of a Jammer-Aided Eavesdropper †
por: Chou, Rémi A., et al.
Publicado: (2022) -
Comparing Several Gamma Means: An Improved Log-Likelihood Ratio Test
por: Wong, Augustine
Publicado: (2023) -
Improved log-Gaussian approximation for over-dispersed Poisson regression: Application to spatial analysis of COVID-19
por: Murakami, Daisuke, et al.
Publicado: (2022)