Cargando…

Enhancing the Corrosion Resistance of Austenitic Steel Using Active Screen Plasma Nitriding and Nitrocarburising

AISI 316L steel was subjected to active screen plasma nitriding and nitrocarburising. The processes were carried out at 440 °C for 6 h. The nitriding process employed an atmosphere of nitrogen and hydrogen, while nitrocarburising was carried out in nitrogen, hydrogen and methane. The processes yield...

Descripción completa

Detalles Bibliográficos
Autor principal: Borowski, Tomasz
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8234334/
https://www.ncbi.nlm.nih.gov/pubmed/34204012
http://dx.doi.org/10.3390/ma14123320
Descripción
Sumario:AISI 316L steel was subjected to active screen plasma nitriding and nitrocarburising. The processes were carried out at 440 °C for 6 h. The nitriding process employed an atmosphere of nitrogen and hydrogen, while nitrocarburising was carried out in nitrogen, hydrogen and methane. The processes yielded structures consisting of nitrogen and nitro-carbon expanded austenite, respectively. Microhardness was measured via the Vickers method, surface roughness using an optical profilometer, microstructure by means of light microscopy, while a scanning electron microscope (SEM) served to determine surface topography. Phase composition, lattice parameter and lattice deformation tests were carried out using the X-ray diffraction (XRD) method. Corrosion resistance measurements were performed in a 0.5 M NaCl solution using the potentiodynamic method. The produced layers showed very high resistance to pitting corrosion, while the pitting potential reached 1.5 V, a value that has not yet been recorded in a chloride environment. After the passive layer was broken down, there was a clear deceleration of pitting in the nitrocarburised layer. It was found that in the case of nitro-carbon expanded austenite, pits are formed much slower compared to the nitrogen austenite layer.