Cargando…
A Probabilistic Model for Real-Time Semantic Prediction of Human Motion Intentions from RGBD-Data
For robots to execute their navigation tasks both fast and safely in the presence of humans, it is necessary to make predictions about the route those humans intend to follow. Within this work, a model-based method is proposed that relates human motion behavior perceived from RGBD input to the const...
Autores principales: | Houtman, Wouter, Bijlenga, Gosse, Torta, Elena, van de Molengraft, René |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8234403/ https://www.ncbi.nlm.nih.gov/pubmed/34208704 http://dx.doi.org/10.3390/s21124141 |
Ejemplares similares
-
Behavior adaptation for mobile robots via semantic map compositions of constraint-based controllers
por: Chen, Hao Liang, et al.
Publicado: (2023) -
3D real-time human reconstruction with a single RGBD camera
por: Lu, Yang, et al.
Publicado: (2022) -
Particle Filters: A Hands-On Tutorial
por: Elfring, Jos, et al.
Publicado: (2021) -
Iterative Pose Refinement for Object Pose Estimation Based on RGBD Data
por: Huang, Shao-Kang, et al.
Publicado: (2020) -
Deep Attention Models for Human Tracking Using RGBD
por: Rasoulidanesh, Maryamsadat, et al.
Publicado: (2019)