Cargando…
A New Fracture Detection Algorithm of Low Amplitude Acoustic Emission Signal Based on Kalman Filter-Ripple Voltage
In this study, an acoustic emission (AE) sensor was utilized to predict fractures that occur in a product during the sheet metal forming process. An AE activity was analyzed, presuming that AE occurs when plastic deformation and fracturing of metallic materials occur. For the analysis, a threshold v...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8234550/ https://www.ncbi.nlm.nih.gov/pubmed/34205784 http://dx.doi.org/10.3390/s21124247 |
_version_ | 1783714109857988608 |
---|---|
author | Jeong, Seong-Min Hong, Seokmoo Oh, Jong-Seok |
author_facet | Jeong, Seong-Min Hong, Seokmoo Oh, Jong-Seok |
author_sort | Jeong, Seong-Min |
collection | PubMed |
description | In this study, an acoustic emission (AE) sensor was utilized to predict fractures that occur in a product during the sheet metal forming process. An AE activity was analyzed, presuming that AE occurs when plastic deformation and fracturing of metallic materials occur. For the analysis, a threshold voltage is set to distinguish the AE signal from the ripple voltage signal and noise. If the amplitude of the AE signal is small, it is difficult to distinguish the AE signal from the ripple voltage signal and the noise signal. Hence, there is a limitation in predicting fractures using the AE sensor. To overcome this limitation, the Kalman filter was used in this study to remove the ripple voltage signal and noise signal and then analyze the activity. However, it was difficult to filter out the ripple voltage signal using a conventional low-pass filter or Kalman filter because the ripple voltage signal is a high-frequency component governed by the switch-mode of the power supply. Therefore, a Kalman filter that has a low Kalman gain was designed to extract only the ripple voltage signal. Based on the KF-RV algorithm, the measured ripple voltage and noise signal were reduced by 97.3% on average. Subsequently, the AE signal was extracted appropriately using the difference between the measured value and the extracted ripple voltage signal. The activity of the extracted AE signal was analyzed using the ring-down count among various AE parameters to determine if there was a fracture in the test specimen. |
format | Online Article Text |
id | pubmed-8234550 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-82345502021-06-27 A New Fracture Detection Algorithm of Low Amplitude Acoustic Emission Signal Based on Kalman Filter-Ripple Voltage Jeong, Seong-Min Hong, Seokmoo Oh, Jong-Seok Sensors (Basel) Communication In this study, an acoustic emission (AE) sensor was utilized to predict fractures that occur in a product during the sheet metal forming process. An AE activity was analyzed, presuming that AE occurs when plastic deformation and fracturing of metallic materials occur. For the analysis, a threshold voltage is set to distinguish the AE signal from the ripple voltage signal and noise. If the amplitude of the AE signal is small, it is difficult to distinguish the AE signal from the ripple voltage signal and the noise signal. Hence, there is a limitation in predicting fractures using the AE sensor. To overcome this limitation, the Kalman filter was used in this study to remove the ripple voltage signal and noise signal and then analyze the activity. However, it was difficult to filter out the ripple voltage signal using a conventional low-pass filter or Kalman filter because the ripple voltage signal is a high-frequency component governed by the switch-mode of the power supply. Therefore, a Kalman filter that has a low Kalman gain was designed to extract only the ripple voltage signal. Based on the KF-RV algorithm, the measured ripple voltage and noise signal were reduced by 97.3% on average. Subsequently, the AE signal was extracted appropriately using the difference between the measured value and the extracted ripple voltage signal. The activity of the extracted AE signal was analyzed using the ring-down count among various AE parameters to determine if there was a fracture in the test specimen. MDPI 2021-06-21 /pmc/articles/PMC8234550/ /pubmed/34205784 http://dx.doi.org/10.3390/s21124247 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Communication Jeong, Seong-Min Hong, Seokmoo Oh, Jong-Seok A New Fracture Detection Algorithm of Low Amplitude Acoustic Emission Signal Based on Kalman Filter-Ripple Voltage |
title | A New Fracture Detection Algorithm of Low Amplitude Acoustic Emission Signal Based on Kalman Filter-Ripple Voltage |
title_full | A New Fracture Detection Algorithm of Low Amplitude Acoustic Emission Signal Based on Kalman Filter-Ripple Voltage |
title_fullStr | A New Fracture Detection Algorithm of Low Amplitude Acoustic Emission Signal Based on Kalman Filter-Ripple Voltage |
title_full_unstemmed | A New Fracture Detection Algorithm of Low Amplitude Acoustic Emission Signal Based on Kalman Filter-Ripple Voltage |
title_short | A New Fracture Detection Algorithm of Low Amplitude Acoustic Emission Signal Based on Kalman Filter-Ripple Voltage |
title_sort | new fracture detection algorithm of low amplitude acoustic emission signal based on kalman filter-ripple voltage |
topic | Communication |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8234550/ https://www.ncbi.nlm.nih.gov/pubmed/34205784 http://dx.doi.org/10.3390/s21124247 |
work_keys_str_mv | AT jeongseongmin anewfracturedetectionalgorithmoflowamplitudeacousticemissionsignalbasedonkalmanfilterripplevoltage AT hongseokmoo anewfracturedetectionalgorithmoflowamplitudeacousticemissionsignalbasedonkalmanfilterripplevoltage AT ohjongseok anewfracturedetectionalgorithmoflowamplitudeacousticemissionsignalbasedonkalmanfilterripplevoltage AT jeongseongmin newfracturedetectionalgorithmoflowamplitudeacousticemissionsignalbasedonkalmanfilterripplevoltage AT hongseokmoo newfracturedetectionalgorithmoflowamplitudeacousticemissionsignalbasedonkalmanfilterripplevoltage AT ohjongseok newfracturedetectionalgorithmoflowamplitudeacousticemissionsignalbasedonkalmanfilterripplevoltage |