Cargando…
Unifying Node Labels, Features, and Distances for Deep Network Completion
Collected network data are often incomplete, with both missing nodes and missing edges. Thus, network completion that infers the unobserved part of the network is essential for downstream tasks. Despite the emerging literature related to network recovery, the potential information has not been effec...
Autores principales: | Wei, Qiang, Hu, Guangmin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8234573/ https://www.ncbi.nlm.nih.gov/pubmed/34207438 http://dx.doi.org/10.3390/e23060771 |
Ejemplares similares
-
Holstein Cattle Face Re-Identification Unifying Global and Part Feature Deep Network with Attention Mechanism
por: Chen, Xiaolang, et al.
Publicado: (2022) -
Unified Topological Inference for Brain Networks in Temporal Lobe Epilepsy Using the Wasserstein Distance
por: Chung, Moo K., et al.
Publicado: (2023) -
Cortical distance unifies the extent of parafoveal contour interactions
por: Coates, Daniel R., et al.
Publicado: (2022) -
Feature and Label Association Based on Granulation Entropy for Deep Neural Networks
por: Bello, Marilyn, et al.
Publicado: (2020) -
A unifying framework for fast randomization of ecological networks with fixed (node) degrees
por: Carstens, Corrie Jacobien, et al.
Publicado: (2018)