Cargando…

Development and Validation of an Interpretable Artificial Intelligence Model to Predict 10-Year Prostate Cancer Mortality

SIMPLE SUMMARY: This article presents a gradient-boosted model that can predict 10-year prostate cancer mortality with high accuracy. The model was developed and validated on prospective multicenter data from the PLCO trial. Using XGBoost and Shapley values, it provides interpretability to understan...

Descripción completa

Detalles Bibliográficos
Autores principales: Bibault, Jean-Emmanuel, Hancock, Steven, Buyyounouski, Mark K., Bagshaw, Hilary, Leppert, John T., Liao, Joseph C., Xing, Lei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8234681/
https://www.ncbi.nlm.nih.gov/pubmed/34205398
http://dx.doi.org/10.3390/cancers13123064
Descripción
Sumario:SIMPLE SUMMARY: This article presents a gradient-boosted model that can predict 10-year prostate cancer mortality with high accuracy. The model was developed and validated on prospective multicenter data from the PLCO trial. Using XGBoost and Shapley values, it provides interpretability to understand its prediction. It can be used online to provide predictions and support informed decision-making in PCa treatment. ABSTRACT: Prostate cancer treatment strategies are guided by risk-stratification. This stratification can be difficult in some patients with known comorbidities. New models are needed to guide strategies and determine which patients are at risk of prostate cancer mortality. This article presents a gradient-boosting model to predict the risk of prostate cancer mortality within 10 years after a cancer diagnosis, and to provide an interpretable prediction. This work uses prospective data from the PLCO Cancer Screening and selected patients who were diagnosed with prostate cancer. During follow-up, 8776 patients were diagnosed with prostate cancer. The dataset was randomly split into a training (n = 7021) and testing (n = 1755) dataset. Accuracy was 0.98 (±0.01), and the area under the receiver operating characteristic was 0.80 (±0.04). This model can be used to support informed decision-making in prostate cancer treatment. AI interpretability provides a novel understanding of the predictions to the users.