Cargando…
Clary Sage Cultivation and Mycorrhizal Inoculation Influence the Rhizosphere Fungal Community of an Aged Trace-Element Polluted Soil
Soil fungal communities play a central role in natural systems and agroecosystems. As such, they have attracted significant research interest. However, the fungal microbiota of aromatic plants, such as clary sage (Salvia sclarea L.), remain unexplored. This is especially the case in trace element (T...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8234821/ https://www.ncbi.nlm.nih.gov/pubmed/34205382 http://dx.doi.org/10.3390/microorganisms9061333 |
_version_ | 1783714171989262336 |
---|---|
author | Raveau, Robin Lounès-Hadj Sahraoui, Anissa Hijri, Mohamed Fontaine, Joël |
author_facet | Raveau, Robin Lounès-Hadj Sahraoui, Anissa Hijri, Mohamed Fontaine, Joël |
author_sort | Raveau, Robin |
collection | PubMed |
description | Soil fungal communities play a central role in natural systems and agroecosystems. As such, they have attracted significant research interest. However, the fungal microbiota of aromatic plants, such as clary sage (Salvia sclarea L.), remain unexplored. This is especially the case in trace element (TE)-polluted conditions and within the framework of phytomanagement approaches. The presence of high concentrations of TEs in soils can negatively affect not only microbial diversity and community composition but also plant establishment and growth. Hence, the objective of this study is to investigate the soil fungal and arbuscular mycorrhizal fungi (AMF) community composition and their changes over time in TE-polluted soils in the vicinity of a former lead smelter and under the cultivation of clary sage. We used Illumina MiSeq amplicon sequencing to evaluate the effects of in situ clary sage cultivation over two successive years, combined or not with exogenous AMF inoculation, on the rhizospheric soil and root fungal communities. We obtained 1239 and 569 fungal amplicon sequence variants (ASV), respectively, in the rhizospheric soil and roots of S. sclarea under TE-polluted conditions. Remarkably, 69 AMF species were detected at our experimental site, belonging to 12 AMF genera. Furthermore, the inoculation treatment significantly shaped the fungal communities in soil and increased the number of AMF ASVs in clary sage roots. In addition, clary sage cultivation over successive years could be one of the explanatory parameters for the inter-annual variation in both fungal and AMF communities in the soil and root biotopes. Our data provide new insights on fungal and AMF communities in the rhizospheric soil and roots of an aromatic plant, clary sage, grown in TE-polluted agricultural soil. |
format | Online Article Text |
id | pubmed-8234821 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-82348212021-06-27 Clary Sage Cultivation and Mycorrhizal Inoculation Influence the Rhizosphere Fungal Community of an Aged Trace-Element Polluted Soil Raveau, Robin Lounès-Hadj Sahraoui, Anissa Hijri, Mohamed Fontaine, Joël Microorganisms Article Soil fungal communities play a central role in natural systems and agroecosystems. As such, they have attracted significant research interest. However, the fungal microbiota of aromatic plants, such as clary sage (Salvia sclarea L.), remain unexplored. This is especially the case in trace element (TE)-polluted conditions and within the framework of phytomanagement approaches. The presence of high concentrations of TEs in soils can negatively affect not only microbial diversity and community composition but also plant establishment and growth. Hence, the objective of this study is to investigate the soil fungal and arbuscular mycorrhizal fungi (AMF) community composition and their changes over time in TE-polluted soils in the vicinity of a former lead smelter and under the cultivation of clary sage. We used Illumina MiSeq amplicon sequencing to evaluate the effects of in situ clary sage cultivation over two successive years, combined or not with exogenous AMF inoculation, on the rhizospheric soil and root fungal communities. We obtained 1239 and 569 fungal amplicon sequence variants (ASV), respectively, in the rhizospheric soil and roots of S. sclarea under TE-polluted conditions. Remarkably, 69 AMF species were detected at our experimental site, belonging to 12 AMF genera. Furthermore, the inoculation treatment significantly shaped the fungal communities in soil and increased the number of AMF ASVs in clary sage roots. In addition, clary sage cultivation over successive years could be one of the explanatory parameters for the inter-annual variation in both fungal and AMF communities in the soil and root biotopes. Our data provide new insights on fungal and AMF communities in the rhizospheric soil and roots of an aromatic plant, clary sage, grown in TE-polluted agricultural soil. MDPI 2021-06-19 /pmc/articles/PMC8234821/ /pubmed/34205382 http://dx.doi.org/10.3390/microorganisms9061333 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Raveau, Robin Lounès-Hadj Sahraoui, Anissa Hijri, Mohamed Fontaine, Joël Clary Sage Cultivation and Mycorrhizal Inoculation Influence the Rhizosphere Fungal Community of an Aged Trace-Element Polluted Soil |
title | Clary Sage Cultivation and Mycorrhizal Inoculation Influence the Rhizosphere Fungal Community of an Aged Trace-Element Polluted Soil |
title_full | Clary Sage Cultivation and Mycorrhizal Inoculation Influence the Rhizosphere Fungal Community of an Aged Trace-Element Polluted Soil |
title_fullStr | Clary Sage Cultivation and Mycorrhizal Inoculation Influence the Rhizosphere Fungal Community of an Aged Trace-Element Polluted Soil |
title_full_unstemmed | Clary Sage Cultivation and Mycorrhizal Inoculation Influence the Rhizosphere Fungal Community of an Aged Trace-Element Polluted Soil |
title_short | Clary Sage Cultivation and Mycorrhizal Inoculation Influence the Rhizosphere Fungal Community of an Aged Trace-Element Polluted Soil |
title_sort | clary sage cultivation and mycorrhizal inoculation influence the rhizosphere fungal community of an aged trace-element polluted soil |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8234821/ https://www.ncbi.nlm.nih.gov/pubmed/34205382 http://dx.doi.org/10.3390/microorganisms9061333 |
work_keys_str_mv | AT raveaurobin clarysagecultivationandmycorrhizalinoculationinfluencetherhizospherefungalcommunityofanagedtraceelementpollutedsoil AT louneshadjsahraouianissa clarysagecultivationandmycorrhizalinoculationinfluencetherhizospherefungalcommunityofanagedtraceelementpollutedsoil AT hijrimohamed clarysagecultivationandmycorrhizalinoculationinfluencetherhizospherefungalcommunityofanagedtraceelementpollutedsoil AT fontainejoel clarysagecultivationandmycorrhizalinoculationinfluencetherhizospherefungalcommunityofanagedtraceelementpollutedsoil |