Cargando…
Learning Polynomial-Based Separable Convolution for 3D Point Cloud Analysis
Shape classification and segmentation of point cloud data are two of the most demanding tasks in photogrammetry and remote sensing applications, which aim to recognize object categories or point labels. Point convolution is an essential operation when designing a network on point clouds for these ta...
Autores principales: | Yu, Ruixuan, Sun, Jian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8235014/ https://www.ncbi.nlm.nih.gov/pubmed/34205310 http://dx.doi.org/10.3390/s21124211 |
Ejemplares similares
-
3D Point Cloud Recognition Based on a Multi-View Convolutional Neural Network
por: Zhang, Le, et al.
Publicado: (2018) -
An Optimized Convolutional Neural Network for the 3D Point-Cloud Compression
por: Luo, Guoliang, et al.
Publicado: (2023) -
Graph Convolutional Network for 3D Object Pose Estimation in a Point Cloud
por: Jung, Tae-Won, et al.
Publicado: (2022) -
Finite free convolutions of polynomials
por: Marcus, Adam W., et al.
Publicado: (2022) -
GC-MLP: Graph Convolution MLP for Point Cloud Analysis
por: Wang, Yong, et al.
Publicado: (2022)