Cargando…
Robust Universal Inference
Learning and making inference from a finite set of samples are among the fundamental problems in science. In most popular applications, the paradigmatic approach is to seek a model that best explains the data. This approach has many desirable properties when the number of samples is large. However,...
Autores principales: | Painsky, Amichai, Feder, Meir |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8235138/ https://www.ncbi.nlm.nih.gov/pubmed/34207449 http://dx.doi.org/10.3390/e23060773 |
Ejemplares similares
-
Nonlinear Canonical Correlation Analysis:A Compressed Representation Approach
por: Painsky, Amichai, et al.
Publicado: (2020) -
Feature Importance in Gradient Boosting Trees with Cross-Validation Feature Selection
por: Adler, Afek Ilay, et al.
Publicado: (2022) -
Detecting Non-Overlapping Signals with Dynamic Programming
por: Roth, Mordechai, et al.
Publicado: (2023) -
Safety of the fourth COVID-19 BNT162b2 mRNA (second booster) vaccine: a prospective and retrospective cohort study
por: Yechezkel, Matan, et al.
Publicado: (2023) -
FARCI: Fast and Robust Connectome Inference
por: Meamardoost, Saber, et al.
Publicado: (2021)