Cargando…

Modern Displacement Measuring Systems Used in Geotechnical Laboratories: Advantages and Disadvantages

The paper presents the contemporary displacement measurement systems used in geotechnical laboratories during the determination of soil precise mechanical parameters, e.g., the shear modules G: initial and in the range of small and very small strains. In the laboratory, researchers use standard sens...

Descripción completa

Detalles Bibliográficos
Autor principal: Jastrzębska, Małgorzata
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8235227/
https://www.ncbi.nlm.nih.gov/pubmed/34208632
http://dx.doi.org/10.3390/s21124139
Descripción
Sumario:The paper presents the contemporary displacement measurement systems used in geotechnical laboratories during the determination of soil precise mechanical parameters, e.g., the shear modules G: initial and in the range of small and very small strains. In the laboratory, researchers use standard sensors for measuring deformation, pressure, and force as well as modern measuring systems such as linear variable differential transformers (LVDT), proximity transducers (PT), magnetic encoder sensors with fiber Bragg grating (FBG), or methods based on laser or X-ray measurement. None of the measurements are universal and their use depends on the type of soil (cohesive, non-cohesive), its condition (loose or dense, stiff or very soft), and its characteristic properties (e.g., organic soil, swelling soil). This study points out the interesting equipment solutions and presents the guidelines for selecting appropriate methods of deformation measurement.