Cargando…
Beyond Charge Transfer: The Impact of Auger Recombination and FRET on PL Quenching in an rGO-QDs System
PL intensity quenching and the PL lifetime reduction of fluorophores located close to graphene derivatives are generally explained by charge and energy transfer processes. Analyzing the PL from PbS QDs in rGO/QD systems, we observed a substantial reduction in average PL lifetimes with an increase in...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8235269/ https://www.ncbi.nlm.nih.gov/pubmed/34205727 http://dx.doi.org/10.3390/nano11061623 |
_version_ | 1783714277074403328 |
---|---|
author | Babaev, Anton A. Sokolova, Anastasiia V. Cherevkov, Sergei A. Berwick, Kevin Baranov, Alexander V. Fedorov, Anatoly V. Litvin, Aleksandr P. |
author_facet | Babaev, Anton A. Sokolova, Anastasiia V. Cherevkov, Sergei A. Berwick, Kevin Baranov, Alexander V. Fedorov, Anatoly V. Litvin, Aleksandr P. |
author_sort | Babaev, Anton A. |
collection | PubMed |
description | PL intensity quenching and the PL lifetime reduction of fluorophores located close to graphene derivatives are generally explained by charge and energy transfer processes. Analyzing the PL from PbS QDs in rGO/QD systems, we observed a substantial reduction in average PL lifetimes with an increase in rGO content that cannot be interpreted solely by these two processes. To explain the PL lifetime dependence on the rGO/QD component ratio, we propose a model based on the Auger recombination of excitations involving excess holes left in the QDs after the charge transfer process. To validate the model, we conducted additional experiments involving the external engineering of free charge carriers, which confirmed the role of excess holes as the main QD PL quenching source. A mathematical simulation of the model demonstrated that the energy transfer between neighboring QDs must also be considered to explain the experimental data carefully. Together, Auger recombination and energy transfer simulation offers us an excellent fit for the average PL lifetime dependence on the component ratio of the rGO/QD system. |
format | Online Article Text |
id | pubmed-8235269 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-82352692021-06-27 Beyond Charge Transfer: The Impact of Auger Recombination and FRET on PL Quenching in an rGO-QDs System Babaev, Anton A. Sokolova, Anastasiia V. Cherevkov, Sergei A. Berwick, Kevin Baranov, Alexander V. Fedorov, Anatoly V. Litvin, Aleksandr P. Nanomaterials (Basel) Article PL intensity quenching and the PL lifetime reduction of fluorophores located close to graphene derivatives are generally explained by charge and energy transfer processes. Analyzing the PL from PbS QDs in rGO/QD systems, we observed a substantial reduction in average PL lifetimes with an increase in rGO content that cannot be interpreted solely by these two processes. To explain the PL lifetime dependence on the rGO/QD component ratio, we propose a model based on the Auger recombination of excitations involving excess holes left in the QDs after the charge transfer process. To validate the model, we conducted additional experiments involving the external engineering of free charge carriers, which confirmed the role of excess holes as the main QD PL quenching source. A mathematical simulation of the model demonstrated that the energy transfer between neighboring QDs must also be considered to explain the experimental data carefully. Together, Auger recombination and energy transfer simulation offers us an excellent fit for the average PL lifetime dependence on the component ratio of the rGO/QD system. MDPI 2021-06-21 /pmc/articles/PMC8235269/ /pubmed/34205727 http://dx.doi.org/10.3390/nano11061623 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Babaev, Anton A. Sokolova, Anastasiia V. Cherevkov, Sergei A. Berwick, Kevin Baranov, Alexander V. Fedorov, Anatoly V. Litvin, Aleksandr P. Beyond Charge Transfer: The Impact of Auger Recombination and FRET on PL Quenching in an rGO-QDs System |
title | Beyond Charge Transfer: The Impact of Auger Recombination and FRET on PL Quenching in an rGO-QDs System |
title_full | Beyond Charge Transfer: The Impact of Auger Recombination and FRET on PL Quenching in an rGO-QDs System |
title_fullStr | Beyond Charge Transfer: The Impact of Auger Recombination and FRET on PL Quenching in an rGO-QDs System |
title_full_unstemmed | Beyond Charge Transfer: The Impact of Auger Recombination and FRET on PL Quenching in an rGO-QDs System |
title_short | Beyond Charge Transfer: The Impact of Auger Recombination and FRET on PL Quenching in an rGO-QDs System |
title_sort | beyond charge transfer: the impact of auger recombination and fret on pl quenching in an rgo-qds system |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8235269/ https://www.ncbi.nlm.nih.gov/pubmed/34205727 http://dx.doi.org/10.3390/nano11061623 |
work_keys_str_mv | AT babaevantona beyondchargetransfertheimpactofaugerrecombinationandfretonplquenchinginanrgoqdssystem AT sokolovaanastasiiav beyondchargetransfertheimpactofaugerrecombinationandfretonplquenchinginanrgoqdssystem AT cherevkovsergeia beyondchargetransfertheimpactofaugerrecombinationandfretonplquenchinginanrgoqdssystem AT berwickkevin beyondchargetransfertheimpactofaugerrecombinationandfretonplquenchinginanrgoqdssystem AT baranovalexanderv beyondchargetransfertheimpactofaugerrecombinationandfretonplquenchinginanrgoqdssystem AT fedorovanatolyv beyondchargetransfertheimpactofaugerrecombinationandfretonplquenchinginanrgoqdssystem AT litvinaleksandrp beyondchargetransfertheimpactofaugerrecombinationandfretonplquenchinginanrgoqdssystem |