Cargando…

Sialoglyco-Conjugate Abnormalities, IL-6 Trans-Signaling and Anti-Ganglioside Immune Response—Potential Interferences in Lupus Nephritis Pathogenesis

We have investigated glycoconjugates sialization profile, endogen synthesis rate of antiganglioside antibodies (AGA), IL-6 signaling pathways correlated with activity disease in systemic lupus erythematous (SLE) and lupus nephritis (LN). Material and methods. A case-control study was developed and i...

Descripción completa

Detalles Bibliográficos
Autores principales: Ene, Corina-Daniela, Penescu, Mircea Nicolae, Nicolae, Ilinca
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8235272/
https://www.ncbi.nlm.nih.gov/pubmed/34205600
http://dx.doi.org/10.3390/diagnostics11061129
Descripción
Sumario:We have investigated glycoconjugates sialization profile, endogen synthesis rate of antiganglioside antibodies (AGA), IL-6 signaling pathways correlated with activity disease in systemic lupus erythematous (SLE) and lupus nephritis (LN). Material and methods. A case-control study was developed and included 109 patients with SLE with or without renal impairment, 32 patients with IgA nephropathy and 60 healthy volunteers, clinically and paraclinically monitored. The following parameters were evaluated in volunteers serum: total sialic acid (TSA), orosomucoids, lipid bound sialic acid (LSA), interleukin-6 (IL-6), soluble factors IL-6R, gp130, anti –GM1, -GM2, -GM3, -GD1a, -GD1b, -GT1b, -GQ1b antigangliosides antibodies of IgG and IgM type. Results. Experimental data analysis showed: increase in synthesis rhythm of sialoglyco-conjugated in SLE (TSA increased in SLE and LN compared to control), accelerated catabolism of LSA in LN (LSA/TSA ratio was higher in SLE and LN than in control group), overexpression of IL-6 mediated trans-signaling (sIL-6R/sgp 130 ratio was subunit in SLE and IgA nephropathy and superunit in LN), large AGA profile synthesis of IgM isotype (over 45.1% in SLE and over 20.7% in LN). Conclusions. Hypersialization, accelerated glycosphingolipids degradation, IL-6 trans-signaling amplify and AGA pattern could represent essential mechanisms in LN pathogenesis.