Cargando…
Identifying Patient–Ventilator Asynchrony on a Small Dataset Using Image-Based Transfer Learning
Mechanical ventilation is an essential life-support treatment for patients who cannot breathe independently. Patient–ventilator asynchrony (PVA) occurs when ventilatory support does not match the needs of the patient and is associated with a series of adverse clinical outcomes. Deep learning methods...
Autores principales: | Pan, Qing, Jia, Mengzhe, Liu, Qijie, Zhang, Lingwei, Pan, Jie, Lu, Fei, Zhang, Zhongheng, Fang, Luping, Ge, Huiqing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8235356/ https://www.ncbi.nlm.nih.gov/pubmed/34204238 http://dx.doi.org/10.3390/s21124149 |
Ejemplares similares
-
Risk Factors for Patient–Ventilator Asynchrony and Its Impact on Clinical Outcomes: Analytics Based on Deep Learning Algorithm
por: Ge, Huiqing, et al.
Publicado: (2020) -
Electrical impedance tomography captures heterogeneous lung ventilation that may be associated with ineffective inspiratory efforts
por: Pan, Qing, et al.
Publicado: (2021) -
Lung Mechanics of Mechanically Ventilated Patients With COVID-19: Analytics With High-Granularity Ventilator Waveform Data
por: Ge, Huiqing, et al.
Publicado: (2020) -
Patient-ventilator asynchrony
por: Holanda, Marcelo Alcantara, et al.
Publicado: (2018) -
Cumulative oxygen deficit is a novel predictor for the timing of invasive mechanical ventilation in COVID-19 patients with respiratory distress
por: Ge, Huiqing, et al.
Publicado: (2020)