Cargando…
Behavior of Ternary Mixtures of Hydrogen Bond Acceptors and Donors in Terms of Band Gap Energies
Three ternary mixtures composed by choline chloride (ChCl), ethylene glycol (EG), and a second hydrogen bond donor (HBD) as ethanol (A), 2-propanol (B), and glycerol (C) were studied in terms of composition related to the band gap energy (BGE). A Design of Experiments (DoE) approach, and in particul...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8235457/ https://www.ncbi.nlm.nih.gov/pubmed/34203075 http://dx.doi.org/10.3390/ma14123418 |
Sumario: | Three ternary mixtures composed by choline chloride (ChCl), ethylene glycol (EG), and a second hydrogen bond donor (HBD) as ethanol (A), 2-propanol (B), and glycerol (C) were studied in terms of composition related to the band gap energy (BGE). A Design of Experiments (DoE) approach, and in particular a Simple Lattice three-components design, was employed for determining the variation of the BGE upon the composition of each system. UV-VIS analysis and subsequent Tauc plot methodology provided the data requested from the DoE, and multivariate statistical analysis revealed a drop of the BGE in correspondence to specific binary compositions for systems A and B. In particular, a BGE of 3.85 eV was registered for the mixtures ChCl/EtOH (1:1) and ChCl/2-propanol (1:1), which represents one of the lowest values ever observed for these systems. |
---|