Cargando…
OmiEmbed: A Unified Multi-Task Deep Learning Framework for Multi-Omics Data
SIMPLE SUMMARY: OmiEmbed is a unified multi-task deep learning framework for multi-omics data, supporting dimensionality reduction, multi-omics integration, tumour type classification, phenotypic feature reconstruction and survival prediction. The framework is comprised of deep embedding and downstr...
Autores principales: | Zhang, Xiaoyu, Xing, Yuting, Sun, Kai, Guo, Yike |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8235477/ https://www.ncbi.nlm.nih.gov/pubmed/34207255 http://dx.doi.org/10.3390/cancers13123047 |
Ejemplares similares
-
Multi-PLI: interpretable multi‐task deep learning model for unifying protein–ligand interaction datasets
por: Hu, Fan, et al.
Publicado: (2021) -
Multi-view clustering for multi-omics data using unified embedding
por: Mitra, Sayantan, et al.
Publicado: (2020) -
Deep learning on graphs for multi-omics classification of COPD
por: Zhuang, Yonghua, et al.
Publicado: (2023) -
A Deep Multi-Task Learning Framework for Brain Tumor Segmentation
por: Huang, He, et al.
Publicado: (2021) -
Asterics: a simple tool for the ExploRation and Integration of omiCS data
por: Maigné, Élise, et al.
Publicado: (2023)