Cargando…
Deep Learning Enables Individual Xenograft Cell Classification in Histological Images by Analysis of Contextual Features
Patient-Derived Xenografts (PDXs) are the preclinical models which best recapitulate inter- and intra-patient complexity of human breast malignancies, and are also emerging as useful tools to study the normal breast epithelium. However, data analysis generated with such models is often confounded by...
Autores principales: | Juppet, Quentin, De Martino, Fabio, Marcandalli, Elodie, Weigert, Martin, Burri, Olivier, Unser, Michael, Brisken, Cathrin, Sage, Daniel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8236058/ https://www.ncbi.nlm.nih.gov/pubmed/33999331 http://dx.doi.org/10.1007/s10911-021-09485-4 |
Ejemplares similares
-
Intraductal xenografts show lobular carcinoma cells rely on their own extracellular matrix and LOXL1
por: Sflomos, George, et al.
Publicado: (2021) -
High hopes for RANKL: will the mouse model live up to its promise?
por: Tanos, Tamara, et al.
Publicado: (2011) -
A new Achilles Heel in breast cancer?
por: Sflomos, George, et al.
Publicado: (2013) -
From normal cell types to malignant phenotypes
por: Yalcin-Ozuysal, Özden, et al.
Publicado: (2009) -
Intraductal patient‐derived xenografts of estrogen receptor α‐positive breast cancer recapitulate the histopathological spectrum and metastatic potential of human lesions
por: Fiche, Maryse, et al.
Publicado: (2018)