Cargando…
Interpretation and Visualization Techniques for Deep Learning Models in Medical Imaging
Deep learning approaches to medical image analysis tasks have recently become popular; however, they suffer from a lack of human interpretability critical for both increasing understanding of the methods’ operation and enabling clinical translation. This review summarizes currently available methods...
Autores principales: | Huff, Daniel T., Weisman, Amy J., Jeraj, Robert |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8236074/ https://www.ncbi.nlm.nih.gov/pubmed/33227719 http://dx.doi.org/10.1088/1361-6560/abcd17 |
Ejemplares similares
-
A deep-learning toolkit for visualization and interpretation of segmented medical images
por: Ghosal, Sambuddha, et al.
Publicado: (2021) -
Performance of an automated registration-based method for longitudinal lesion matching and comparison to inter-reader variability
por: Huff, Daniel T, et al.
Publicado: (2023) -
Deep Learning Application for Analyzing of Constituents and Their Correlations in the Interpretations of Medical Images
por: Ursuleanu, Tudor Florin, et al.
Publicado: (2021) -
Deep Learning Techniques for Spanish Sign Language Interpretation
por: Martinez-Martin, Ester, et al.
Publicado: (2021) -
Interpreting deep learning models for glioma survival classification using visualization and textual explanations
por: Osadebey, Michael, et al.
Publicado: (2023)