Cargando…

Another lesson from beautiful monsters: the case of 'sex reversals' in the Ammonoidea and their significance

BACKGROUND: Expression of sexual dimorphism is recognised in various fossil groups of molluscs such as the Ammonoidea, an extinct group of shelled cephalopods. During the Mesozoic, the best-documented sexual dimorphic examples are seen in the Jurassic superfamily Perisphinctoidea. It is usually expr...

Descripción completa

Detalles Bibliográficos
Autores principales: Frau, Camille, Boursicot, Pierre-Yves
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8236137/
https://www.ncbi.nlm.nih.gov/pubmed/34174830
http://dx.doi.org/10.1186/s12862-021-01857-y
_version_ 1783714476229394432
author Frau, Camille
Boursicot, Pierre-Yves
author_facet Frau, Camille
Boursicot, Pierre-Yves
author_sort Frau, Camille
collection PubMed
description BACKGROUND: Expression of sexual dimorphism is recognised in various fossil groups of molluscs such as the Ammonoidea, an extinct group of shelled cephalopods. During the Mesozoic, the best-documented sexual dimorphic examples are seen in the Jurassic superfamily Perisphinctoidea. It is usually expressed by distinct adult size and apertural modifications between the antidimorphs. Putative males (otherwise referred to as microconch) are small in size and develop lappets at the end of the shell while the females (macroconch) are larger and bear a simple peristome. Dubious cases are, however, known in that superfamily, which often relate to taxonomic biases or lack of diagnostic characters, and some others expose ontogenetic anomalies illustrated by ‘sex reversals’ in the shell morphology and ornamentation. RESULTS: The discovery of two specimens of the Callovian Aspidoceratidae Peltoceras athleta (Phillips), having both female and male features, questions the significance and causes of ‘sex reversals’ in the Ammonoidea. The two specimens have started with the macroconch ontogeny of Peltoceras athleta and show an apparent change toward maleness in the adult, as illustrated by their rounded whorl section, ribs retroversion, fading of the tubercles and lappets typical of the microconchs. Few other cases of female-to-male, as well as male-to-female ‘sex reversal’, are known in the fossil record, all belonging to the Jurassic Perisphinctoidea (families Perisphinctidae or Aspidoceratidae). Since all Jurassic Perisphinctoidea are strictly gonochoristic, these ‘sex reversals’ are pathological in nature and are herein referred to as a new forma-type pathology: namely “forma hermaphrodita”. CONCLUSIONS: In the absence of any clear evidence of injury or parasitism, we hypothesize that such “forma hermaphrodita” individuals illustrate pathologic cases of intersexuality. Little is known about the ammonoid soft parts, and it is not possible to determine which internal sexual organs occur in specimens having both male and female external shell features. Abnormal feminisation and/or masculinisation also occur in modern cephalopods, the latter also grouping only gonochoric species. This phenomenon is similarly illustrated by a change in the adult body size and a mixing of both female and male structures. In that case, intersexuality is either advantageous in the population or caused sterility. The causes of intersexuality are not clearly established but environmental pollutants are evoked in modern cephalopods because they act as endocrine disrupters. ‘Sex reversals’ and/or non-functional reproductive abnormalities have also been caused by endocrine disrupters in various gonochoric gastropods species, but infestation, genetic abnormalities, temperature fluctuations or viruses are multiple causes, which can stimulate or inhibit neural-endocrinal activity by direct gonadal influence, and ultimately lead to feminisation or masculinisation in fishes, isopods, crustaceans, and gastropods as well. Regardless of whether “forma hermaphrodita” is due to an exogenic or endogenic cause, the record of intersex Perisphinctoidea in the Jurassic can be explained by the ready recognition of dimorphic pairs, and the easy collection of large and sufficiently preserved fossil palaeopopulations in which intersex specimens have statistically more chance to be found.
format Online
Article
Text
id pubmed-8236137
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-82361372021-06-28 Another lesson from beautiful monsters: the case of 'sex reversals' in the Ammonoidea and their significance Frau, Camille Boursicot, Pierre-Yves BMC Ecol Evol Research BACKGROUND: Expression of sexual dimorphism is recognised in various fossil groups of molluscs such as the Ammonoidea, an extinct group of shelled cephalopods. During the Mesozoic, the best-documented sexual dimorphic examples are seen in the Jurassic superfamily Perisphinctoidea. It is usually expressed by distinct adult size and apertural modifications between the antidimorphs. Putative males (otherwise referred to as microconch) are small in size and develop lappets at the end of the shell while the females (macroconch) are larger and bear a simple peristome. Dubious cases are, however, known in that superfamily, which often relate to taxonomic biases or lack of diagnostic characters, and some others expose ontogenetic anomalies illustrated by ‘sex reversals’ in the shell morphology and ornamentation. RESULTS: The discovery of two specimens of the Callovian Aspidoceratidae Peltoceras athleta (Phillips), having both female and male features, questions the significance and causes of ‘sex reversals’ in the Ammonoidea. The two specimens have started with the macroconch ontogeny of Peltoceras athleta and show an apparent change toward maleness in the adult, as illustrated by their rounded whorl section, ribs retroversion, fading of the tubercles and lappets typical of the microconchs. Few other cases of female-to-male, as well as male-to-female ‘sex reversal’, are known in the fossil record, all belonging to the Jurassic Perisphinctoidea (families Perisphinctidae or Aspidoceratidae). Since all Jurassic Perisphinctoidea are strictly gonochoristic, these ‘sex reversals’ are pathological in nature and are herein referred to as a new forma-type pathology: namely “forma hermaphrodita”. CONCLUSIONS: In the absence of any clear evidence of injury or parasitism, we hypothesize that such “forma hermaphrodita” individuals illustrate pathologic cases of intersexuality. Little is known about the ammonoid soft parts, and it is not possible to determine which internal sexual organs occur in specimens having both male and female external shell features. Abnormal feminisation and/or masculinisation also occur in modern cephalopods, the latter also grouping only gonochoric species. This phenomenon is similarly illustrated by a change in the adult body size and a mixing of both female and male structures. In that case, intersexuality is either advantageous in the population or caused sterility. The causes of intersexuality are not clearly established but environmental pollutants are evoked in modern cephalopods because they act as endocrine disrupters. ‘Sex reversals’ and/or non-functional reproductive abnormalities have also been caused by endocrine disrupters in various gonochoric gastropods species, but infestation, genetic abnormalities, temperature fluctuations or viruses are multiple causes, which can stimulate or inhibit neural-endocrinal activity by direct gonadal influence, and ultimately lead to feminisation or masculinisation in fishes, isopods, crustaceans, and gastropods as well. Regardless of whether “forma hermaphrodita” is due to an exogenic or endogenic cause, the record of intersex Perisphinctoidea in the Jurassic can be explained by the ready recognition of dimorphic pairs, and the easy collection of large and sufficiently preserved fossil palaeopopulations in which intersex specimens have statistically more chance to be found. BioMed Central 2021-06-26 /pmc/articles/PMC8236137/ /pubmed/34174830 http://dx.doi.org/10.1186/s12862-021-01857-y Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/ (https://creativecommons.org/publicdomain/zero/1.0/) ) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
spellingShingle Research
Frau, Camille
Boursicot, Pierre-Yves
Another lesson from beautiful monsters: the case of 'sex reversals' in the Ammonoidea and their significance
title Another lesson from beautiful monsters: the case of 'sex reversals' in the Ammonoidea and their significance
title_full Another lesson from beautiful monsters: the case of 'sex reversals' in the Ammonoidea and their significance
title_fullStr Another lesson from beautiful monsters: the case of 'sex reversals' in the Ammonoidea and their significance
title_full_unstemmed Another lesson from beautiful monsters: the case of 'sex reversals' in the Ammonoidea and their significance
title_short Another lesson from beautiful monsters: the case of 'sex reversals' in the Ammonoidea and their significance
title_sort another lesson from beautiful monsters: the case of 'sex reversals' in the ammonoidea and their significance
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8236137/
https://www.ncbi.nlm.nih.gov/pubmed/34174830
http://dx.doi.org/10.1186/s12862-021-01857-y
work_keys_str_mv AT fraucamille anotherlessonfrombeautifulmonstersthecaseofsexreversalsintheammonoideaandtheirsignificance
AT boursicotpierreyves anotherlessonfrombeautifulmonstersthecaseofsexreversalsintheammonoideaandtheirsignificance