Cargando…
Large-scale literature mining to assess the relation between anti-cancer drugs and cancer types
BACKGROUND: There is a huge body of scientific literature describing the relation between tumor types and anti-cancer drugs. The vast amount of scientific literature makes it impossible for researchers and physicians to extract all relevant information manually. METHODS: In order to cope with the la...
Autores principales: | Bauer, Chris, Herwig, Ralf, Lienhard, Matthias, Prasse, Paul, Scheffer, Tobias, Schuchhardt, Johannes |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8236166/ https://www.ncbi.nlm.nih.gov/pubmed/34174885 http://dx.doi.org/10.1186/s12967-021-02941-z |
Ejemplares similares
-
Pre-Training on In Vitro and Fine-Tuning on Patient-Derived Data Improves Deep Neural Networks for Anti-Cancer Drug-Sensitivity Prediction
por: Prasse, Paul, et al.
Publicado: (2022) -
Matching anticancer compounds and tumor cell lines by neural networks with ranking loss
por: Prasse, Paul, et al.
Publicado: (2022) -
iTextMine: integrated text-mining system for large-scale knowledge extraction from the literature
por: Ren, Jia, et al.
Publicado: (2018) -
Molecular profiling of thyroid cancer subtypes using large-scale text mining
por: Wu, Chengkun, et al.
Publicado: (2014) -
MEDIPS: genome-wide differential coverage analysis of sequencing data derived from DNA enrichment experiments
por: Lienhard, Matthias, et al.
Publicado: (2014)