Cargando…
Scalable robust graph and feature extraction for arbitrary vessel networks in large volumetric datasets
BACKGROUND: Recent advances in 3D imaging technologies provide novel insights to researchers and reveal finer and more detail of examined specimen, especially in the biomedical domain, but also impose huge challenges regarding scalability for automated analysis algorithms due to rapidly increasing d...
Autores principales: | Drees, Dominik, Scherzinger, Aaron, Hägerling, René, Kiefer, Friedemann, Jiang, Xiaoyi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8236169/ https://www.ncbi.nlm.nih.gov/pubmed/34174827 http://dx.doi.org/10.1186/s12859-021-04262-w |
Ejemplares similares
-
Statistical Permutation-based Artery Mapping (SPAM): a novel approach to evaluate imaging signals in the vessel wall
por: Seifert, Robert, et al.
Publicado: (2017) -
Vegfr3-tdTomato, a reporter mouse for microscopic visualization of lymphatic vessel by multiple modalities
por: Redder, Esther, et al.
Publicado: (2021) -
Robust and Scalable Learning of Complex Intrinsic Dataset Geometry via ElPiGraph
por: Albergante, Luca, et al.
Publicado: (2020) -
Toward a scalable framework for reproducible processing of volumetric, nanoscale neuroimaging datasets
por: Johnson, Erik C, et al.
Publicado: (2020) -
Performance of single and multi-atlas based automated landmarking methods compared to expert annotations in volumetric microCT datasets of mouse mandibles
por: Young, Ryan, et al.
Publicado: (2015)