Cargando…
A novel nonlinear dimension reduction approach to infer population structure for low-coverage sequencing data
BACKGROUND: Low-depth sequencing allows researchers to increase sample size at the expense of lower accuracy. To incorporate uncertainties while maintaining statistical power, we introduce MCPCA_PopGen to analyze population structure of low-depth sequencing data. RESULTS: The method optimizes the ch...
Autores principales: | Zhang, Miao, Liu, Yiwen, Zhou, Hua, Watkins, Joseph, Zhou, Jin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8236193/ https://www.ncbi.nlm.nih.gov/pubmed/34174829 http://dx.doi.org/10.1186/s12859-021-04265-7 |
Ejemplares similares
-
Accucopy: accurate and fast inference of allele-specific copy number alterations from low-coverage low-purity tumor sequencing data
por: Fan, Xinping, et al.
Publicado: (2021) -
A dimension reduction technique applied to regression on high dimension, low sample size neurophysiological data sets
por: Santana, Adrielle C., et al.
Publicado: (2021) -
Prediction With Dimension Reduction of Multiple Molecular Data Sources for Patient Survival
por: Kaplan, Adam, et al.
Publicado: (2017) -
Reduction of dimension for nonlinear dynamical systems
por: Harrington, Heather A., et al.
Publicado: (2016) -
Nonlinear dimension reduction with Wright–Fisher kernel for genotype aggregation and association mapping
por: Zhu, Hongjie, et al.
Publicado: (2012)