Cargando…

The macro and micro of chromosome conformation capture

The 3D organization of the genome facilitates gene regulation, replication, and repair, making it a key feature of genomic function and one that remains to be properly understood. Over the past two decades, a variety of chromosome conformation capture (3C) methods have delineated genome folding from...

Descripción completa

Detalles Bibliográficos
Autores principales: Goel, Viraat Y., Hansen, Anders S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley & Sons, Inc. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8236208/
https://www.ncbi.nlm.nih.gov/pubmed/32987449
http://dx.doi.org/10.1002/wdev.395
_version_ 1783714491233468416
author Goel, Viraat Y.
Hansen, Anders S.
author_facet Goel, Viraat Y.
Hansen, Anders S.
author_sort Goel, Viraat Y.
collection PubMed
description The 3D organization of the genome facilitates gene regulation, replication, and repair, making it a key feature of genomic function and one that remains to be properly understood. Over the past two decades, a variety of chromosome conformation capture (3C) methods have delineated genome folding from megabase‐scale compartments and topologically associating domains (TADs) down to kilobase‐scale enhancer‐promoter interactions. Understanding the functional role of each layer of genome organization is a gateway to understanding cell state, development, and disease. Here, we discuss the evolution of 3C‐based technologies for mapping 3D genome organization. We focus on genomics methods and provide a historical account of the development from 3C to Hi‐C. We also discuss ChIP‐based techniques that focus on 3D genome organization mediated by specific proteins, capture‐based methods that focus on particular regions or regulatory elements, 3C‐orthogonal methods that do not rely on restriction digestion and proximity ligation, and methods for mapping the DNA–RNA and RNA–RNA interactomes. We consider the biological discoveries that have come from these methods, examine the mechanistic contributions of CTCF, cohesin, and loop extrusion to genomic folding, and detail the 3D genome field's current understanding of nuclear architecture. Finally, we give special consideration to Micro‐C as an emerging frontier in chromosome conformation capture and discuss recent Micro‐C findings uncovering fine‐scale chromatin organization in unprecedented detail. This article is categorized under: Gene Expression and Transcriptional Hierarchies > Regulatory Mechanisms. Gene Expression and Transcriptional Hierarchies > Gene Networks and Genomics.
format Online
Article
Text
id pubmed-8236208
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher John Wiley & Sons, Inc.
record_format MEDLINE/PubMed
spelling pubmed-82362082021-10-21 The macro and micro of chromosome conformation capture Goel, Viraat Y. Hansen, Anders S. Wiley Interdiscip Rev Dev Biol Overview The 3D organization of the genome facilitates gene regulation, replication, and repair, making it a key feature of genomic function and one that remains to be properly understood. Over the past two decades, a variety of chromosome conformation capture (3C) methods have delineated genome folding from megabase‐scale compartments and topologically associating domains (TADs) down to kilobase‐scale enhancer‐promoter interactions. Understanding the functional role of each layer of genome organization is a gateway to understanding cell state, development, and disease. Here, we discuss the evolution of 3C‐based technologies for mapping 3D genome organization. We focus on genomics methods and provide a historical account of the development from 3C to Hi‐C. We also discuss ChIP‐based techniques that focus on 3D genome organization mediated by specific proteins, capture‐based methods that focus on particular regions or regulatory elements, 3C‐orthogonal methods that do not rely on restriction digestion and proximity ligation, and methods for mapping the DNA–RNA and RNA–RNA interactomes. We consider the biological discoveries that have come from these methods, examine the mechanistic contributions of CTCF, cohesin, and loop extrusion to genomic folding, and detail the 3D genome field's current understanding of nuclear architecture. Finally, we give special consideration to Micro‐C as an emerging frontier in chromosome conformation capture and discuss recent Micro‐C findings uncovering fine‐scale chromatin organization in unprecedented detail. This article is categorized under: Gene Expression and Transcriptional Hierarchies > Regulatory Mechanisms. Gene Expression and Transcriptional Hierarchies > Gene Networks and Genomics. John Wiley & Sons, Inc. 2020-09-28 2021 /pmc/articles/PMC8236208/ /pubmed/32987449 http://dx.doi.org/10.1002/wdev.395 Text en © 2020 The Authors. WIREs Developmental Biology published by Wiley Periodicals LLC. https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Overview
Goel, Viraat Y.
Hansen, Anders S.
The macro and micro of chromosome conformation capture
title The macro and micro of chromosome conformation capture
title_full The macro and micro of chromosome conformation capture
title_fullStr The macro and micro of chromosome conformation capture
title_full_unstemmed The macro and micro of chromosome conformation capture
title_short The macro and micro of chromosome conformation capture
title_sort macro and micro of chromosome conformation capture
topic Overview
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8236208/
https://www.ncbi.nlm.nih.gov/pubmed/32987449
http://dx.doi.org/10.1002/wdev.395
work_keys_str_mv AT goelviraaty themacroandmicroofchromosomeconformationcapture
AT hansenanderss themacroandmicroofchromosomeconformationcapture
AT goelviraaty macroandmicroofchromosomeconformationcapture
AT hansenanderss macroandmicroofchromosomeconformationcapture