Cargando…
Risk factors for adverse outcomes during mechanical ventilation of 1152 COVID-19 patients: a multicenter machine learning study with highly granular data from the Dutch Data Warehouse
BACKGROUND: The identification of risk factors for adverse outcomes and prolonged intensive care unit (ICU) stay in COVID-19 patients is essential for prognostication, determining treatment intensity, and resource allocation. Previous studies have determined risk factors on admission only, and inclu...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8236316/ https://www.ncbi.nlm.nih.gov/pubmed/34180025 http://dx.doi.org/10.1186/s40635-021-00397-5 |
_version_ | 1783714511106080768 |
---|---|
author | Fleuren, Lucas M. Tonutti, Michele de Bruin, Daan P. Lalisang, Robbert C. A. Dam, Tariq A. Gommers, Diederik Cremer, Olaf L. Bosman, Rob J. Vonk, Sebastiaan J. J. Fornasa, Mattia Machado, Tomas van der Meer, Nardo J. M. Rigter, Sander Wils, Evert-Jan Frenzel, Tim Dongelmans, Dave A. de Jong, Remko Peters, Marco Kamps, Marlijn J. A. Ramnarain, Dharmanand Nowitzky, Ralph Nooteboom, Fleur G. C. A. de Ruijter, Wouter Urlings-Strop, Louise C. Smit, Ellen G. M. Mehagnoul-Schipper, D. Jannet Dormans, Tom de Jager, Cornelis P. C. Hendriks, Stefaan H. A. Oostdijk, Evelien Reidinga, Auke C. Festen-Spanjer, Barbara Brunnekreef, Gert Cornet, Alexander D. van den Tempel, Walter Boelens, Age D. Koetsier, Peter Lens, Judith Achterberg, Sefanja Faber, Harald J. Karakus, A. Beukema, Menno Entjes, Robert de Jong, Paul Houwert, Taco Hovenkamp, Hidde Noorduijn Londono, Roberto Quintarelli, Davide Scholtemeijer, Martijn G. de Beer, Aletta A. Cinà, Giovanni Beudel, Martijn de Keizer, Nicolet F. Hoogendoorn, Mark Girbes, Armand R. J. Herter, Willem E. Elbers, Paul W. G. Thoral, Patrick J. |
author_facet | Fleuren, Lucas M. Tonutti, Michele de Bruin, Daan P. Lalisang, Robbert C. A. Dam, Tariq A. Gommers, Diederik Cremer, Olaf L. Bosman, Rob J. Vonk, Sebastiaan J. J. Fornasa, Mattia Machado, Tomas van der Meer, Nardo J. M. Rigter, Sander Wils, Evert-Jan Frenzel, Tim Dongelmans, Dave A. de Jong, Remko Peters, Marco Kamps, Marlijn J. A. Ramnarain, Dharmanand Nowitzky, Ralph Nooteboom, Fleur G. C. A. de Ruijter, Wouter Urlings-Strop, Louise C. Smit, Ellen G. M. Mehagnoul-Schipper, D. Jannet Dormans, Tom de Jager, Cornelis P. C. Hendriks, Stefaan H. A. Oostdijk, Evelien Reidinga, Auke C. Festen-Spanjer, Barbara Brunnekreef, Gert Cornet, Alexander D. van den Tempel, Walter Boelens, Age D. Koetsier, Peter Lens, Judith Achterberg, Sefanja Faber, Harald J. Karakus, A. Beukema, Menno Entjes, Robert de Jong, Paul Houwert, Taco Hovenkamp, Hidde Noorduijn Londono, Roberto Quintarelli, Davide Scholtemeijer, Martijn G. de Beer, Aletta A. Cinà, Giovanni Beudel, Martijn de Keizer, Nicolet F. Hoogendoorn, Mark Girbes, Armand R. J. Herter, Willem E. Elbers, Paul W. G. Thoral, Patrick J. |
author_sort | Fleuren, Lucas M. |
collection | PubMed |
description | BACKGROUND: The identification of risk factors for adverse outcomes and prolonged intensive care unit (ICU) stay in COVID-19 patients is essential for prognostication, determining treatment intensity, and resource allocation. Previous studies have determined risk factors on admission only, and included a limited number of predictors. Therefore, using data from the highly granular and multicenter Dutch Data Warehouse, we developed machine learning models to identify risk factors for ICU mortality, ventilator-free days and ICU-free days during the course of invasive mechanical ventilation (IMV) in COVID-19 patients. METHODS: The DDW is a growing electronic health record database of critically ill COVID-19 patients in the Netherlands. All adult ICU patients on IMV were eligible for inclusion. Transfers, patients admitted for less than 24 h, and patients still admitted at time of data extraction were excluded. Predictors were selected based on the literature, and included medication dosage and fluid balance. Multiple algorithms were trained and validated on up to three sets of observations per patient on day 1, 7, and 14 using fivefold nested cross-validation, keeping observations from an individual patient in the same split. RESULTS: A total of 1152 patients were included in the model. XGBoost models performed best for all outcomes and were used to calculate predictor importance. Using Shapley additive explanations (SHAP), age was the most important demographic risk factor for the outcomes upon start of IMV and throughout its course. The relative probability of death across age values is visualized in Partial Dependence Plots (PDPs), with an increase starting at 54 years. Besides age, acidaemia, low P/F-ratios and high driving pressures demonstrated a higher probability of death. The PDP for driving pressure showed a relative probability increase starting at 12 cmH(2)O. CONCLUSION: Age is the most important demographic risk factor of ICU mortality, ICU-free days and ventilator-free days throughout the course of invasive mechanical ventilation in critically ill COVID-19 patients. pH, P/F ratio, and driving pressure should be monitored closely over the course of mechanical ventilation as risk factors predictive of these outcomes. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s40635-021-00397-5. |
format | Online Article Text |
id | pubmed-8236316 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Springer International Publishing |
record_format | MEDLINE/PubMed |
spelling | pubmed-82363162021-06-28 Risk factors for adverse outcomes during mechanical ventilation of 1152 COVID-19 patients: a multicenter machine learning study with highly granular data from the Dutch Data Warehouse Fleuren, Lucas M. Tonutti, Michele de Bruin, Daan P. Lalisang, Robbert C. A. Dam, Tariq A. Gommers, Diederik Cremer, Olaf L. Bosman, Rob J. Vonk, Sebastiaan J. J. Fornasa, Mattia Machado, Tomas van der Meer, Nardo J. M. Rigter, Sander Wils, Evert-Jan Frenzel, Tim Dongelmans, Dave A. de Jong, Remko Peters, Marco Kamps, Marlijn J. A. Ramnarain, Dharmanand Nowitzky, Ralph Nooteboom, Fleur G. C. A. de Ruijter, Wouter Urlings-Strop, Louise C. Smit, Ellen G. M. Mehagnoul-Schipper, D. Jannet Dormans, Tom de Jager, Cornelis P. C. Hendriks, Stefaan H. A. Oostdijk, Evelien Reidinga, Auke C. Festen-Spanjer, Barbara Brunnekreef, Gert Cornet, Alexander D. van den Tempel, Walter Boelens, Age D. Koetsier, Peter Lens, Judith Achterberg, Sefanja Faber, Harald J. Karakus, A. Beukema, Menno Entjes, Robert de Jong, Paul Houwert, Taco Hovenkamp, Hidde Noorduijn Londono, Roberto Quintarelli, Davide Scholtemeijer, Martijn G. de Beer, Aletta A. Cinà, Giovanni Beudel, Martijn de Keizer, Nicolet F. Hoogendoorn, Mark Girbes, Armand R. J. Herter, Willem E. Elbers, Paul W. G. Thoral, Patrick J. Intensive Care Med Exp Research Articles BACKGROUND: The identification of risk factors for adverse outcomes and prolonged intensive care unit (ICU) stay in COVID-19 patients is essential for prognostication, determining treatment intensity, and resource allocation. Previous studies have determined risk factors on admission only, and included a limited number of predictors. Therefore, using data from the highly granular and multicenter Dutch Data Warehouse, we developed machine learning models to identify risk factors for ICU mortality, ventilator-free days and ICU-free days during the course of invasive mechanical ventilation (IMV) in COVID-19 patients. METHODS: The DDW is a growing electronic health record database of critically ill COVID-19 patients in the Netherlands. All adult ICU patients on IMV were eligible for inclusion. Transfers, patients admitted for less than 24 h, and patients still admitted at time of data extraction were excluded. Predictors were selected based on the literature, and included medication dosage and fluid balance. Multiple algorithms were trained and validated on up to three sets of observations per patient on day 1, 7, and 14 using fivefold nested cross-validation, keeping observations from an individual patient in the same split. RESULTS: A total of 1152 patients were included in the model. XGBoost models performed best for all outcomes and were used to calculate predictor importance. Using Shapley additive explanations (SHAP), age was the most important demographic risk factor for the outcomes upon start of IMV and throughout its course. The relative probability of death across age values is visualized in Partial Dependence Plots (PDPs), with an increase starting at 54 years. Besides age, acidaemia, low P/F-ratios and high driving pressures demonstrated a higher probability of death. The PDP for driving pressure showed a relative probability increase starting at 12 cmH(2)O. CONCLUSION: Age is the most important demographic risk factor of ICU mortality, ICU-free days and ventilator-free days throughout the course of invasive mechanical ventilation in critically ill COVID-19 patients. pH, P/F ratio, and driving pressure should be monitored closely over the course of mechanical ventilation as risk factors predictive of these outcomes. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s40635-021-00397-5. Springer International Publishing 2021-06-28 /pmc/articles/PMC8236316/ /pubmed/34180025 http://dx.doi.org/10.1186/s40635-021-00397-5 Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Research Articles Fleuren, Lucas M. Tonutti, Michele de Bruin, Daan P. Lalisang, Robbert C. A. Dam, Tariq A. Gommers, Diederik Cremer, Olaf L. Bosman, Rob J. Vonk, Sebastiaan J. J. Fornasa, Mattia Machado, Tomas van der Meer, Nardo J. M. Rigter, Sander Wils, Evert-Jan Frenzel, Tim Dongelmans, Dave A. de Jong, Remko Peters, Marco Kamps, Marlijn J. A. Ramnarain, Dharmanand Nowitzky, Ralph Nooteboom, Fleur G. C. A. de Ruijter, Wouter Urlings-Strop, Louise C. Smit, Ellen G. M. Mehagnoul-Schipper, D. Jannet Dormans, Tom de Jager, Cornelis P. C. Hendriks, Stefaan H. A. Oostdijk, Evelien Reidinga, Auke C. Festen-Spanjer, Barbara Brunnekreef, Gert Cornet, Alexander D. van den Tempel, Walter Boelens, Age D. Koetsier, Peter Lens, Judith Achterberg, Sefanja Faber, Harald J. Karakus, A. Beukema, Menno Entjes, Robert de Jong, Paul Houwert, Taco Hovenkamp, Hidde Noorduijn Londono, Roberto Quintarelli, Davide Scholtemeijer, Martijn G. de Beer, Aletta A. Cinà, Giovanni Beudel, Martijn de Keizer, Nicolet F. Hoogendoorn, Mark Girbes, Armand R. J. Herter, Willem E. Elbers, Paul W. G. Thoral, Patrick J. Risk factors for adverse outcomes during mechanical ventilation of 1152 COVID-19 patients: a multicenter machine learning study with highly granular data from the Dutch Data Warehouse |
title | Risk factors for adverse outcomes during mechanical ventilation of 1152 COVID-19 patients: a multicenter machine learning study with highly granular data from the Dutch Data Warehouse |
title_full | Risk factors for adverse outcomes during mechanical ventilation of 1152 COVID-19 patients: a multicenter machine learning study with highly granular data from the Dutch Data Warehouse |
title_fullStr | Risk factors for adverse outcomes during mechanical ventilation of 1152 COVID-19 patients: a multicenter machine learning study with highly granular data from the Dutch Data Warehouse |
title_full_unstemmed | Risk factors for adverse outcomes during mechanical ventilation of 1152 COVID-19 patients: a multicenter machine learning study with highly granular data from the Dutch Data Warehouse |
title_short | Risk factors for adverse outcomes during mechanical ventilation of 1152 COVID-19 patients: a multicenter machine learning study with highly granular data from the Dutch Data Warehouse |
title_sort | risk factors for adverse outcomes during mechanical ventilation of 1152 covid-19 patients: a multicenter machine learning study with highly granular data from the dutch data warehouse |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8236316/ https://www.ncbi.nlm.nih.gov/pubmed/34180025 http://dx.doi.org/10.1186/s40635-021-00397-5 |
work_keys_str_mv | AT fleurenlucasm riskfactorsforadverseoutcomesduringmechanicalventilationof1152covid19patientsamulticentermachinelearningstudywithhighlygranulardatafromthedutchdatawarehouse AT tonuttimichele riskfactorsforadverseoutcomesduringmechanicalventilationof1152covid19patientsamulticentermachinelearningstudywithhighlygranulardatafromthedutchdatawarehouse AT debruindaanp riskfactorsforadverseoutcomesduringmechanicalventilationof1152covid19patientsamulticentermachinelearningstudywithhighlygranulardatafromthedutchdatawarehouse AT lalisangrobbertca riskfactorsforadverseoutcomesduringmechanicalventilationof1152covid19patientsamulticentermachinelearningstudywithhighlygranulardatafromthedutchdatawarehouse AT damtariqa riskfactorsforadverseoutcomesduringmechanicalventilationof1152covid19patientsamulticentermachinelearningstudywithhighlygranulardatafromthedutchdatawarehouse AT gommersdiederik riskfactorsforadverseoutcomesduringmechanicalventilationof1152covid19patientsamulticentermachinelearningstudywithhighlygranulardatafromthedutchdatawarehouse AT cremerolafl riskfactorsforadverseoutcomesduringmechanicalventilationof1152covid19patientsamulticentermachinelearningstudywithhighlygranulardatafromthedutchdatawarehouse AT bosmanrobj riskfactorsforadverseoutcomesduringmechanicalventilationof1152covid19patientsamulticentermachinelearningstudywithhighlygranulardatafromthedutchdatawarehouse AT vonksebastiaanjj riskfactorsforadverseoutcomesduringmechanicalventilationof1152covid19patientsamulticentermachinelearningstudywithhighlygranulardatafromthedutchdatawarehouse AT fornasamattia riskfactorsforadverseoutcomesduringmechanicalventilationof1152covid19patientsamulticentermachinelearningstudywithhighlygranulardatafromthedutchdatawarehouse AT machadotomas riskfactorsforadverseoutcomesduringmechanicalventilationof1152covid19patientsamulticentermachinelearningstudywithhighlygranulardatafromthedutchdatawarehouse AT vandermeernardojm riskfactorsforadverseoutcomesduringmechanicalventilationof1152covid19patientsamulticentermachinelearningstudywithhighlygranulardatafromthedutchdatawarehouse AT rigtersander riskfactorsforadverseoutcomesduringmechanicalventilationof1152covid19patientsamulticentermachinelearningstudywithhighlygranulardatafromthedutchdatawarehouse AT wilsevertjan riskfactorsforadverseoutcomesduringmechanicalventilationof1152covid19patientsamulticentermachinelearningstudywithhighlygranulardatafromthedutchdatawarehouse AT frenzeltim riskfactorsforadverseoutcomesduringmechanicalventilationof1152covid19patientsamulticentermachinelearningstudywithhighlygranulardatafromthedutchdatawarehouse AT dongelmansdavea riskfactorsforadverseoutcomesduringmechanicalventilationof1152covid19patientsamulticentermachinelearningstudywithhighlygranulardatafromthedutchdatawarehouse AT dejongremko riskfactorsforadverseoutcomesduringmechanicalventilationof1152covid19patientsamulticentermachinelearningstudywithhighlygranulardatafromthedutchdatawarehouse AT petersmarco riskfactorsforadverseoutcomesduringmechanicalventilationof1152covid19patientsamulticentermachinelearningstudywithhighlygranulardatafromthedutchdatawarehouse AT kampsmarlijnja riskfactorsforadverseoutcomesduringmechanicalventilationof1152covid19patientsamulticentermachinelearningstudywithhighlygranulardatafromthedutchdatawarehouse AT ramnaraindharmanand riskfactorsforadverseoutcomesduringmechanicalventilationof1152covid19patientsamulticentermachinelearningstudywithhighlygranulardatafromthedutchdatawarehouse AT nowitzkyralph riskfactorsforadverseoutcomesduringmechanicalventilationof1152covid19patientsamulticentermachinelearningstudywithhighlygranulardatafromthedutchdatawarehouse AT nooteboomfleurgca riskfactorsforadverseoutcomesduringmechanicalventilationof1152covid19patientsamulticentermachinelearningstudywithhighlygranulardatafromthedutchdatawarehouse AT deruijterwouter riskfactorsforadverseoutcomesduringmechanicalventilationof1152covid19patientsamulticentermachinelearningstudywithhighlygranulardatafromthedutchdatawarehouse AT urlingsstroplouisec riskfactorsforadverseoutcomesduringmechanicalventilationof1152covid19patientsamulticentermachinelearningstudywithhighlygranulardatafromthedutchdatawarehouse AT smitellengm riskfactorsforadverseoutcomesduringmechanicalventilationof1152covid19patientsamulticentermachinelearningstudywithhighlygranulardatafromthedutchdatawarehouse AT mehagnoulschipperdjannet riskfactorsforadverseoutcomesduringmechanicalventilationof1152covid19patientsamulticentermachinelearningstudywithhighlygranulardatafromthedutchdatawarehouse AT dormanstom riskfactorsforadverseoutcomesduringmechanicalventilationof1152covid19patientsamulticentermachinelearningstudywithhighlygranulardatafromthedutchdatawarehouse AT dejagercornelispc riskfactorsforadverseoutcomesduringmechanicalventilationof1152covid19patientsamulticentermachinelearningstudywithhighlygranulardatafromthedutchdatawarehouse AT hendriksstefaanha riskfactorsforadverseoutcomesduringmechanicalventilationof1152covid19patientsamulticentermachinelearningstudywithhighlygranulardatafromthedutchdatawarehouse AT oostdijkevelien riskfactorsforadverseoutcomesduringmechanicalventilationof1152covid19patientsamulticentermachinelearningstudywithhighlygranulardatafromthedutchdatawarehouse AT reidingaaukec riskfactorsforadverseoutcomesduringmechanicalventilationof1152covid19patientsamulticentermachinelearningstudywithhighlygranulardatafromthedutchdatawarehouse AT festenspanjerbarbara riskfactorsforadverseoutcomesduringmechanicalventilationof1152covid19patientsamulticentermachinelearningstudywithhighlygranulardatafromthedutchdatawarehouse AT brunnekreefgert riskfactorsforadverseoutcomesduringmechanicalventilationof1152covid19patientsamulticentermachinelearningstudywithhighlygranulardatafromthedutchdatawarehouse AT cornetalexanderd riskfactorsforadverseoutcomesduringmechanicalventilationof1152covid19patientsamulticentermachinelearningstudywithhighlygranulardatafromthedutchdatawarehouse AT vandentempelwalter riskfactorsforadverseoutcomesduringmechanicalventilationof1152covid19patientsamulticentermachinelearningstudywithhighlygranulardatafromthedutchdatawarehouse AT boelensaged riskfactorsforadverseoutcomesduringmechanicalventilationof1152covid19patientsamulticentermachinelearningstudywithhighlygranulardatafromthedutchdatawarehouse AT koetsierpeter riskfactorsforadverseoutcomesduringmechanicalventilationof1152covid19patientsamulticentermachinelearningstudywithhighlygranulardatafromthedutchdatawarehouse AT lensjudith riskfactorsforadverseoutcomesduringmechanicalventilationof1152covid19patientsamulticentermachinelearningstudywithhighlygranulardatafromthedutchdatawarehouse AT achterbergsefanja riskfactorsforadverseoutcomesduringmechanicalventilationof1152covid19patientsamulticentermachinelearningstudywithhighlygranulardatafromthedutchdatawarehouse AT faberharaldj riskfactorsforadverseoutcomesduringmechanicalventilationof1152covid19patientsamulticentermachinelearningstudywithhighlygranulardatafromthedutchdatawarehouse AT karakusa riskfactorsforadverseoutcomesduringmechanicalventilationof1152covid19patientsamulticentermachinelearningstudywithhighlygranulardatafromthedutchdatawarehouse AT beukemamenno riskfactorsforadverseoutcomesduringmechanicalventilationof1152covid19patientsamulticentermachinelearningstudywithhighlygranulardatafromthedutchdatawarehouse AT entjesrobert riskfactorsforadverseoutcomesduringmechanicalventilationof1152covid19patientsamulticentermachinelearningstudywithhighlygranulardatafromthedutchdatawarehouse AT dejongpaul riskfactorsforadverseoutcomesduringmechanicalventilationof1152covid19patientsamulticentermachinelearningstudywithhighlygranulardatafromthedutchdatawarehouse AT houwerttaco riskfactorsforadverseoutcomesduringmechanicalventilationof1152covid19patientsamulticentermachinelearningstudywithhighlygranulardatafromthedutchdatawarehouse AT hovenkamphidde riskfactorsforadverseoutcomesduringmechanicalventilationof1152covid19patientsamulticentermachinelearningstudywithhighlygranulardatafromthedutchdatawarehouse AT noorduijnlondonoroberto riskfactorsforadverseoutcomesduringmechanicalventilationof1152covid19patientsamulticentermachinelearningstudywithhighlygranulardatafromthedutchdatawarehouse AT quintarellidavide riskfactorsforadverseoutcomesduringmechanicalventilationof1152covid19patientsamulticentermachinelearningstudywithhighlygranulardatafromthedutchdatawarehouse AT scholtemeijermartijng riskfactorsforadverseoutcomesduringmechanicalventilationof1152covid19patientsamulticentermachinelearningstudywithhighlygranulardatafromthedutchdatawarehouse AT debeeralettaa riskfactorsforadverseoutcomesduringmechanicalventilationof1152covid19patientsamulticentermachinelearningstudywithhighlygranulardatafromthedutchdatawarehouse AT cinagiovanni riskfactorsforadverseoutcomesduringmechanicalventilationof1152covid19patientsamulticentermachinelearningstudywithhighlygranulardatafromthedutchdatawarehouse AT beudelmartijn riskfactorsforadverseoutcomesduringmechanicalventilationof1152covid19patientsamulticentermachinelearningstudywithhighlygranulardatafromthedutchdatawarehouse AT dekeizernicoletf riskfactorsforadverseoutcomesduringmechanicalventilationof1152covid19patientsamulticentermachinelearningstudywithhighlygranulardatafromthedutchdatawarehouse AT hoogendoornmark riskfactorsforadverseoutcomesduringmechanicalventilationof1152covid19patientsamulticentermachinelearningstudywithhighlygranulardatafromthedutchdatawarehouse AT girbesarmandrj riskfactorsforadverseoutcomesduringmechanicalventilationof1152covid19patientsamulticentermachinelearningstudywithhighlygranulardatafromthedutchdatawarehouse AT herterwilleme riskfactorsforadverseoutcomesduringmechanicalventilationof1152covid19patientsamulticentermachinelearningstudywithhighlygranulardatafromthedutchdatawarehouse AT elberspaulwg riskfactorsforadverseoutcomesduringmechanicalventilationof1152covid19patientsamulticentermachinelearningstudywithhighlygranulardatafromthedutchdatawarehouse AT thoralpatrickj riskfactorsforadverseoutcomesduringmechanicalventilationof1152covid19patientsamulticentermachinelearningstudywithhighlygranulardatafromthedutchdatawarehouse AT riskfactorsforadverseoutcomesduringmechanicalventilationof1152covid19patientsamulticentermachinelearningstudywithhighlygranulardatafromthedutchdatawarehouse |