Cargando…

Risk factors for adverse outcomes during mechanical ventilation of 1152 COVID-19 patients: a multicenter machine learning study with highly granular data from the Dutch Data Warehouse

BACKGROUND: The identification of risk factors for adverse outcomes and prolonged intensive care unit (ICU) stay in COVID-19 patients is essential for prognostication, determining treatment intensity, and resource allocation. Previous studies have determined risk factors on admission only, and inclu...

Descripción completa

Detalles Bibliográficos
Autores principales: Fleuren, Lucas M., Tonutti, Michele, de Bruin, Daan P., Lalisang, Robbert C. A., Dam, Tariq A., Gommers, Diederik, Cremer, Olaf L., Bosman, Rob J., Vonk, Sebastiaan J. J., Fornasa, Mattia, Machado, Tomas, van der Meer, Nardo J. M., Rigter, Sander, Wils, Evert-Jan, Frenzel, Tim, Dongelmans, Dave A., de Jong, Remko, Peters, Marco, Kamps, Marlijn J. A., Ramnarain, Dharmanand, Nowitzky, Ralph, Nooteboom, Fleur G. C. A., de Ruijter, Wouter, Urlings-Strop, Louise C., Smit, Ellen G. M., Mehagnoul-Schipper, D. Jannet, Dormans, Tom, de Jager, Cornelis P. C., Hendriks, Stefaan H. A., Oostdijk, Evelien, Reidinga, Auke C., Festen-Spanjer, Barbara, Brunnekreef, Gert, Cornet, Alexander D., van den Tempel, Walter, Boelens, Age D., Koetsier, Peter, Lens, Judith, Achterberg, Sefanja, Faber, Harald J., Karakus, A., Beukema, Menno, Entjes, Robert, de Jong, Paul, Houwert, Taco, Hovenkamp, Hidde, Noorduijn Londono, Roberto, Quintarelli, Davide, Scholtemeijer, Martijn G., de Beer, Aletta A., Cinà, Giovanni, Beudel, Martijn, de Keizer, Nicolet F., Hoogendoorn, Mark, Girbes, Armand R. J., Herter, Willem E., Elbers, Paul W. G., Thoral, Patrick J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer International Publishing 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8236316/
https://www.ncbi.nlm.nih.gov/pubmed/34180025
http://dx.doi.org/10.1186/s40635-021-00397-5
_version_ 1783714511106080768
author Fleuren, Lucas M.
Tonutti, Michele
de Bruin, Daan P.
Lalisang, Robbert C. A.
Dam, Tariq A.
Gommers, Diederik
Cremer, Olaf L.
Bosman, Rob J.
Vonk, Sebastiaan J. J.
Fornasa, Mattia
Machado, Tomas
van der Meer, Nardo J. M.
Rigter, Sander
Wils, Evert-Jan
Frenzel, Tim
Dongelmans, Dave A.
de Jong, Remko
Peters, Marco
Kamps, Marlijn J. A.
Ramnarain, Dharmanand
Nowitzky, Ralph
Nooteboom, Fleur G. C. A.
de Ruijter, Wouter
Urlings-Strop, Louise C.
Smit, Ellen G. M.
Mehagnoul-Schipper, D. Jannet
Dormans, Tom
de Jager, Cornelis P. C.
Hendriks, Stefaan H. A.
Oostdijk, Evelien
Reidinga, Auke C.
Festen-Spanjer, Barbara
Brunnekreef, Gert
Cornet, Alexander D.
van den Tempel, Walter
Boelens, Age D.
Koetsier, Peter
Lens, Judith
Achterberg, Sefanja
Faber, Harald J.
Karakus, A.
Beukema, Menno
Entjes, Robert
de Jong, Paul
Houwert, Taco
Hovenkamp, Hidde
Noorduijn Londono, Roberto
Quintarelli, Davide
Scholtemeijer, Martijn G.
de Beer, Aletta A.
Cinà, Giovanni
Beudel, Martijn
de Keizer, Nicolet F.
Hoogendoorn, Mark
Girbes, Armand R. J.
Herter, Willem E.
Elbers, Paul W. G.
Thoral, Patrick J.
author_facet Fleuren, Lucas M.
Tonutti, Michele
de Bruin, Daan P.
Lalisang, Robbert C. A.
Dam, Tariq A.
Gommers, Diederik
Cremer, Olaf L.
Bosman, Rob J.
Vonk, Sebastiaan J. J.
Fornasa, Mattia
Machado, Tomas
van der Meer, Nardo J. M.
Rigter, Sander
Wils, Evert-Jan
Frenzel, Tim
Dongelmans, Dave A.
de Jong, Remko
Peters, Marco
Kamps, Marlijn J. A.
Ramnarain, Dharmanand
Nowitzky, Ralph
Nooteboom, Fleur G. C. A.
de Ruijter, Wouter
Urlings-Strop, Louise C.
Smit, Ellen G. M.
Mehagnoul-Schipper, D. Jannet
Dormans, Tom
de Jager, Cornelis P. C.
Hendriks, Stefaan H. A.
Oostdijk, Evelien
Reidinga, Auke C.
Festen-Spanjer, Barbara
Brunnekreef, Gert
Cornet, Alexander D.
van den Tempel, Walter
Boelens, Age D.
Koetsier, Peter
Lens, Judith
Achterberg, Sefanja
Faber, Harald J.
Karakus, A.
Beukema, Menno
Entjes, Robert
de Jong, Paul
Houwert, Taco
Hovenkamp, Hidde
Noorduijn Londono, Roberto
Quintarelli, Davide
Scholtemeijer, Martijn G.
de Beer, Aletta A.
Cinà, Giovanni
Beudel, Martijn
de Keizer, Nicolet F.
Hoogendoorn, Mark
Girbes, Armand R. J.
Herter, Willem E.
Elbers, Paul W. G.
Thoral, Patrick J.
author_sort Fleuren, Lucas M.
collection PubMed
description BACKGROUND: The identification of risk factors for adverse outcomes and prolonged intensive care unit (ICU) stay in COVID-19 patients is essential for prognostication, determining treatment intensity, and resource allocation. Previous studies have determined risk factors on admission only, and included a limited number of predictors. Therefore, using data from the highly granular and multicenter Dutch Data Warehouse, we developed machine learning models to identify risk factors for ICU mortality, ventilator-free days and ICU-free days during the course of invasive mechanical ventilation (IMV) in COVID-19 patients. METHODS: The DDW is a growing electronic health record database of critically ill COVID-19 patients in the Netherlands. All adult ICU patients on IMV were eligible for inclusion. Transfers, patients admitted for less than 24 h, and patients still admitted at time of data extraction were excluded. Predictors were selected based on the literature, and included medication dosage and fluid balance. Multiple algorithms were trained and validated on up to three sets of observations per patient on day 1, 7, and 14 using fivefold nested cross-validation, keeping observations from an individual patient in the same split. RESULTS: A total of 1152 patients were included in the model. XGBoost models performed best for all outcomes and were used to calculate predictor importance. Using Shapley additive explanations (SHAP), age was the most important demographic risk factor for the outcomes upon start of IMV and throughout its course. The relative probability of death across age values is visualized in Partial Dependence Plots (PDPs), with an increase starting at 54 years. Besides age, acidaemia, low P/F-ratios and high driving pressures demonstrated a higher probability of death. The PDP for driving pressure showed a relative probability increase starting at 12 cmH(2)O. CONCLUSION: Age is the most important demographic risk factor of ICU mortality, ICU-free days and ventilator-free days throughout the course of invasive mechanical ventilation in critically ill COVID-19 patients. pH, P/F ratio, and driving pressure should be monitored closely over the course of mechanical ventilation as risk factors predictive of these outcomes. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s40635-021-00397-5.
format Online
Article
Text
id pubmed-8236316
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Springer International Publishing
record_format MEDLINE/PubMed
spelling pubmed-82363162021-06-28 Risk factors for adverse outcomes during mechanical ventilation of 1152 COVID-19 patients: a multicenter machine learning study with highly granular data from the Dutch Data Warehouse Fleuren, Lucas M. Tonutti, Michele de Bruin, Daan P. Lalisang, Robbert C. A. Dam, Tariq A. Gommers, Diederik Cremer, Olaf L. Bosman, Rob J. Vonk, Sebastiaan J. J. Fornasa, Mattia Machado, Tomas van der Meer, Nardo J. M. Rigter, Sander Wils, Evert-Jan Frenzel, Tim Dongelmans, Dave A. de Jong, Remko Peters, Marco Kamps, Marlijn J. A. Ramnarain, Dharmanand Nowitzky, Ralph Nooteboom, Fleur G. C. A. de Ruijter, Wouter Urlings-Strop, Louise C. Smit, Ellen G. M. Mehagnoul-Schipper, D. Jannet Dormans, Tom de Jager, Cornelis P. C. Hendriks, Stefaan H. A. Oostdijk, Evelien Reidinga, Auke C. Festen-Spanjer, Barbara Brunnekreef, Gert Cornet, Alexander D. van den Tempel, Walter Boelens, Age D. Koetsier, Peter Lens, Judith Achterberg, Sefanja Faber, Harald J. Karakus, A. Beukema, Menno Entjes, Robert de Jong, Paul Houwert, Taco Hovenkamp, Hidde Noorduijn Londono, Roberto Quintarelli, Davide Scholtemeijer, Martijn G. de Beer, Aletta A. Cinà, Giovanni Beudel, Martijn de Keizer, Nicolet F. Hoogendoorn, Mark Girbes, Armand R. J. Herter, Willem E. Elbers, Paul W. G. Thoral, Patrick J. Intensive Care Med Exp Research Articles BACKGROUND: The identification of risk factors for adverse outcomes and prolonged intensive care unit (ICU) stay in COVID-19 patients is essential for prognostication, determining treatment intensity, and resource allocation. Previous studies have determined risk factors on admission only, and included a limited number of predictors. Therefore, using data from the highly granular and multicenter Dutch Data Warehouse, we developed machine learning models to identify risk factors for ICU mortality, ventilator-free days and ICU-free days during the course of invasive mechanical ventilation (IMV) in COVID-19 patients. METHODS: The DDW is a growing electronic health record database of critically ill COVID-19 patients in the Netherlands. All adult ICU patients on IMV were eligible for inclusion. Transfers, patients admitted for less than 24 h, and patients still admitted at time of data extraction were excluded. Predictors were selected based on the literature, and included medication dosage and fluid balance. Multiple algorithms were trained and validated on up to three sets of observations per patient on day 1, 7, and 14 using fivefold nested cross-validation, keeping observations from an individual patient in the same split. RESULTS: A total of 1152 patients were included in the model. XGBoost models performed best for all outcomes and were used to calculate predictor importance. Using Shapley additive explanations (SHAP), age was the most important demographic risk factor for the outcomes upon start of IMV and throughout its course. The relative probability of death across age values is visualized in Partial Dependence Plots (PDPs), with an increase starting at 54 years. Besides age, acidaemia, low P/F-ratios and high driving pressures demonstrated a higher probability of death. The PDP for driving pressure showed a relative probability increase starting at 12 cmH(2)O. CONCLUSION: Age is the most important demographic risk factor of ICU mortality, ICU-free days and ventilator-free days throughout the course of invasive mechanical ventilation in critically ill COVID-19 patients. pH, P/F ratio, and driving pressure should be monitored closely over the course of mechanical ventilation as risk factors predictive of these outcomes. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s40635-021-00397-5. Springer International Publishing 2021-06-28 /pmc/articles/PMC8236316/ /pubmed/34180025 http://dx.doi.org/10.1186/s40635-021-00397-5 Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Research Articles
Fleuren, Lucas M.
Tonutti, Michele
de Bruin, Daan P.
Lalisang, Robbert C. A.
Dam, Tariq A.
Gommers, Diederik
Cremer, Olaf L.
Bosman, Rob J.
Vonk, Sebastiaan J. J.
Fornasa, Mattia
Machado, Tomas
van der Meer, Nardo J. M.
Rigter, Sander
Wils, Evert-Jan
Frenzel, Tim
Dongelmans, Dave A.
de Jong, Remko
Peters, Marco
Kamps, Marlijn J. A.
Ramnarain, Dharmanand
Nowitzky, Ralph
Nooteboom, Fleur G. C. A.
de Ruijter, Wouter
Urlings-Strop, Louise C.
Smit, Ellen G. M.
Mehagnoul-Schipper, D. Jannet
Dormans, Tom
de Jager, Cornelis P. C.
Hendriks, Stefaan H. A.
Oostdijk, Evelien
Reidinga, Auke C.
Festen-Spanjer, Barbara
Brunnekreef, Gert
Cornet, Alexander D.
van den Tempel, Walter
Boelens, Age D.
Koetsier, Peter
Lens, Judith
Achterberg, Sefanja
Faber, Harald J.
Karakus, A.
Beukema, Menno
Entjes, Robert
de Jong, Paul
Houwert, Taco
Hovenkamp, Hidde
Noorduijn Londono, Roberto
Quintarelli, Davide
Scholtemeijer, Martijn G.
de Beer, Aletta A.
Cinà, Giovanni
Beudel, Martijn
de Keizer, Nicolet F.
Hoogendoorn, Mark
Girbes, Armand R. J.
Herter, Willem E.
Elbers, Paul W. G.
Thoral, Patrick J.
Risk factors for adverse outcomes during mechanical ventilation of 1152 COVID-19 patients: a multicenter machine learning study with highly granular data from the Dutch Data Warehouse
title Risk factors for adverse outcomes during mechanical ventilation of 1152 COVID-19 patients: a multicenter machine learning study with highly granular data from the Dutch Data Warehouse
title_full Risk factors for adverse outcomes during mechanical ventilation of 1152 COVID-19 patients: a multicenter machine learning study with highly granular data from the Dutch Data Warehouse
title_fullStr Risk factors for adverse outcomes during mechanical ventilation of 1152 COVID-19 patients: a multicenter machine learning study with highly granular data from the Dutch Data Warehouse
title_full_unstemmed Risk factors for adverse outcomes during mechanical ventilation of 1152 COVID-19 patients: a multicenter machine learning study with highly granular data from the Dutch Data Warehouse
title_short Risk factors for adverse outcomes during mechanical ventilation of 1152 COVID-19 patients: a multicenter machine learning study with highly granular data from the Dutch Data Warehouse
title_sort risk factors for adverse outcomes during mechanical ventilation of 1152 covid-19 patients: a multicenter machine learning study with highly granular data from the dutch data warehouse
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8236316/
https://www.ncbi.nlm.nih.gov/pubmed/34180025
http://dx.doi.org/10.1186/s40635-021-00397-5
work_keys_str_mv AT fleurenlucasm riskfactorsforadverseoutcomesduringmechanicalventilationof1152covid19patientsamulticentermachinelearningstudywithhighlygranulardatafromthedutchdatawarehouse
AT tonuttimichele riskfactorsforadverseoutcomesduringmechanicalventilationof1152covid19patientsamulticentermachinelearningstudywithhighlygranulardatafromthedutchdatawarehouse
AT debruindaanp riskfactorsforadverseoutcomesduringmechanicalventilationof1152covid19patientsamulticentermachinelearningstudywithhighlygranulardatafromthedutchdatawarehouse
AT lalisangrobbertca riskfactorsforadverseoutcomesduringmechanicalventilationof1152covid19patientsamulticentermachinelearningstudywithhighlygranulardatafromthedutchdatawarehouse
AT damtariqa riskfactorsforadverseoutcomesduringmechanicalventilationof1152covid19patientsamulticentermachinelearningstudywithhighlygranulardatafromthedutchdatawarehouse
AT gommersdiederik riskfactorsforadverseoutcomesduringmechanicalventilationof1152covid19patientsamulticentermachinelearningstudywithhighlygranulardatafromthedutchdatawarehouse
AT cremerolafl riskfactorsforadverseoutcomesduringmechanicalventilationof1152covid19patientsamulticentermachinelearningstudywithhighlygranulardatafromthedutchdatawarehouse
AT bosmanrobj riskfactorsforadverseoutcomesduringmechanicalventilationof1152covid19patientsamulticentermachinelearningstudywithhighlygranulardatafromthedutchdatawarehouse
AT vonksebastiaanjj riskfactorsforadverseoutcomesduringmechanicalventilationof1152covid19patientsamulticentermachinelearningstudywithhighlygranulardatafromthedutchdatawarehouse
AT fornasamattia riskfactorsforadverseoutcomesduringmechanicalventilationof1152covid19patientsamulticentermachinelearningstudywithhighlygranulardatafromthedutchdatawarehouse
AT machadotomas riskfactorsforadverseoutcomesduringmechanicalventilationof1152covid19patientsamulticentermachinelearningstudywithhighlygranulardatafromthedutchdatawarehouse
AT vandermeernardojm riskfactorsforadverseoutcomesduringmechanicalventilationof1152covid19patientsamulticentermachinelearningstudywithhighlygranulardatafromthedutchdatawarehouse
AT rigtersander riskfactorsforadverseoutcomesduringmechanicalventilationof1152covid19patientsamulticentermachinelearningstudywithhighlygranulardatafromthedutchdatawarehouse
AT wilsevertjan riskfactorsforadverseoutcomesduringmechanicalventilationof1152covid19patientsamulticentermachinelearningstudywithhighlygranulardatafromthedutchdatawarehouse
AT frenzeltim riskfactorsforadverseoutcomesduringmechanicalventilationof1152covid19patientsamulticentermachinelearningstudywithhighlygranulardatafromthedutchdatawarehouse
AT dongelmansdavea riskfactorsforadverseoutcomesduringmechanicalventilationof1152covid19patientsamulticentermachinelearningstudywithhighlygranulardatafromthedutchdatawarehouse
AT dejongremko riskfactorsforadverseoutcomesduringmechanicalventilationof1152covid19patientsamulticentermachinelearningstudywithhighlygranulardatafromthedutchdatawarehouse
AT petersmarco riskfactorsforadverseoutcomesduringmechanicalventilationof1152covid19patientsamulticentermachinelearningstudywithhighlygranulardatafromthedutchdatawarehouse
AT kampsmarlijnja riskfactorsforadverseoutcomesduringmechanicalventilationof1152covid19patientsamulticentermachinelearningstudywithhighlygranulardatafromthedutchdatawarehouse
AT ramnaraindharmanand riskfactorsforadverseoutcomesduringmechanicalventilationof1152covid19patientsamulticentermachinelearningstudywithhighlygranulardatafromthedutchdatawarehouse
AT nowitzkyralph riskfactorsforadverseoutcomesduringmechanicalventilationof1152covid19patientsamulticentermachinelearningstudywithhighlygranulardatafromthedutchdatawarehouse
AT nooteboomfleurgca riskfactorsforadverseoutcomesduringmechanicalventilationof1152covid19patientsamulticentermachinelearningstudywithhighlygranulardatafromthedutchdatawarehouse
AT deruijterwouter riskfactorsforadverseoutcomesduringmechanicalventilationof1152covid19patientsamulticentermachinelearningstudywithhighlygranulardatafromthedutchdatawarehouse
AT urlingsstroplouisec riskfactorsforadverseoutcomesduringmechanicalventilationof1152covid19patientsamulticentermachinelearningstudywithhighlygranulardatafromthedutchdatawarehouse
AT smitellengm riskfactorsforadverseoutcomesduringmechanicalventilationof1152covid19patientsamulticentermachinelearningstudywithhighlygranulardatafromthedutchdatawarehouse
AT mehagnoulschipperdjannet riskfactorsforadverseoutcomesduringmechanicalventilationof1152covid19patientsamulticentermachinelearningstudywithhighlygranulardatafromthedutchdatawarehouse
AT dormanstom riskfactorsforadverseoutcomesduringmechanicalventilationof1152covid19patientsamulticentermachinelearningstudywithhighlygranulardatafromthedutchdatawarehouse
AT dejagercornelispc riskfactorsforadverseoutcomesduringmechanicalventilationof1152covid19patientsamulticentermachinelearningstudywithhighlygranulardatafromthedutchdatawarehouse
AT hendriksstefaanha riskfactorsforadverseoutcomesduringmechanicalventilationof1152covid19patientsamulticentermachinelearningstudywithhighlygranulardatafromthedutchdatawarehouse
AT oostdijkevelien riskfactorsforadverseoutcomesduringmechanicalventilationof1152covid19patientsamulticentermachinelearningstudywithhighlygranulardatafromthedutchdatawarehouse
AT reidingaaukec riskfactorsforadverseoutcomesduringmechanicalventilationof1152covid19patientsamulticentermachinelearningstudywithhighlygranulardatafromthedutchdatawarehouse
AT festenspanjerbarbara riskfactorsforadverseoutcomesduringmechanicalventilationof1152covid19patientsamulticentermachinelearningstudywithhighlygranulardatafromthedutchdatawarehouse
AT brunnekreefgert riskfactorsforadverseoutcomesduringmechanicalventilationof1152covid19patientsamulticentermachinelearningstudywithhighlygranulardatafromthedutchdatawarehouse
AT cornetalexanderd riskfactorsforadverseoutcomesduringmechanicalventilationof1152covid19patientsamulticentermachinelearningstudywithhighlygranulardatafromthedutchdatawarehouse
AT vandentempelwalter riskfactorsforadverseoutcomesduringmechanicalventilationof1152covid19patientsamulticentermachinelearningstudywithhighlygranulardatafromthedutchdatawarehouse
AT boelensaged riskfactorsforadverseoutcomesduringmechanicalventilationof1152covid19patientsamulticentermachinelearningstudywithhighlygranulardatafromthedutchdatawarehouse
AT koetsierpeter riskfactorsforadverseoutcomesduringmechanicalventilationof1152covid19patientsamulticentermachinelearningstudywithhighlygranulardatafromthedutchdatawarehouse
AT lensjudith riskfactorsforadverseoutcomesduringmechanicalventilationof1152covid19patientsamulticentermachinelearningstudywithhighlygranulardatafromthedutchdatawarehouse
AT achterbergsefanja riskfactorsforadverseoutcomesduringmechanicalventilationof1152covid19patientsamulticentermachinelearningstudywithhighlygranulardatafromthedutchdatawarehouse
AT faberharaldj riskfactorsforadverseoutcomesduringmechanicalventilationof1152covid19patientsamulticentermachinelearningstudywithhighlygranulardatafromthedutchdatawarehouse
AT karakusa riskfactorsforadverseoutcomesduringmechanicalventilationof1152covid19patientsamulticentermachinelearningstudywithhighlygranulardatafromthedutchdatawarehouse
AT beukemamenno riskfactorsforadverseoutcomesduringmechanicalventilationof1152covid19patientsamulticentermachinelearningstudywithhighlygranulardatafromthedutchdatawarehouse
AT entjesrobert riskfactorsforadverseoutcomesduringmechanicalventilationof1152covid19patientsamulticentermachinelearningstudywithhighlygranulardatafromthedutchdatawarehouse
AT dejongpaul riskfactorsforadverseoutcomesduringmechanicalventilationof1152covid19patientsamulticentermachinelearningstudywithhighlygranulardatafromthedutchdatawarehouse
AT houwerttaco riskfactorsforadverseoutcomesduringmechanicalventilationof1152covid19patientsamulticentermachinelearningstudywithhighlygranulardatafromthedutchdatawarehouse
AT hovenkamphidde riskfactorsforadverseoutcomesduringmechanicalventilationof1152covid19patientsamulticentermachinelearningstudywithhighlygranulardatafromthedutchdatawarehouse
AT noorduijnlondonoroberto riskfactorsforadverseoutcomesduringmechanicalventilationof1152covid19patientsamulticentermachinelearningstudywithhighlygranulardatafromthedutchdatawarehouse
AT quintarellidavide riskfactorsforadverseoutcomesduringmechanicalventilationof1152covid19patientsamulticentermachinelearningstudywithhighlygranulardatafromthedutchdatawarehouse
AT scholtemeijermartijng riskfactorsforadverseoutcomesduringmechanicalventilationof1152covid19patientsamulticentermachinelearningstudywithhighlygranulardatafromthedutchdatawarehouse
AT debeeralettaa riskfactorsforadverseoutcomesduringmechanicalventilationof1152covid19patientsamulticentermachinelearningstudywithhighlygranulardatafromthedutchdatawarehouse
AT cinagiovanni riskfactorsforadverseoutcomesduringmechanicalventilationof1152covid19patientsamulticentermachinelearningstudywithhighlygranulardatafromthedutchdatawarehouse
AT beudelmartijn riskfactorsforadverseoutcomesduringmechanicalventilationof1152covid19patientsamulticentermachinelearningstudywithhighlygranulardatafromthedutchdatawarehouse
AT dekeizernicoletf riskfactorsforadverseoutcomesduringmechanicalventilationof1152covid19patientsamulticentermachinelearningstudywithhighlygranulardatafromthedutchdatawarehouse
AT hoogendoornmark riskfactorsforadverseoutcomesduringmechanicalventilationof1152covid19patientsamulticentermachinelearningstudywithhighlygranulardatafromthedutchdatawarehouse
AT girbesarmandrj riskfactorsforadverseoutcomesduringmechanicalventilationof1152covid19patientsamulticentermachinelearningstudywithhighlygranulardatafromthedutchdatawarehouse
AT herterwilleme riskfactorsforadverseoutcomesduringmechanicalventilationof1152covid19patientsamulticentermachinelearningstudywithhighlygranulardatafromthedutchdatawarehouse
AT elberspaulwg riskfactorsforadverseoutcomesduringmechanicalventilationof1152covid19patientsamulticentermachinelearningstudywithhighlygranulardatafromthedutchdatawarehouse
AT thoralpatrickj riskfactorsforadverseoutcomesduringmechanicalventilationof1152covid19patientsamulticentermachinelearningstudywithhighlygranulardatafromthedutchdatawarehouse
AT riskfactorsforadverseoutcomesduringmechanicalventilationof1152covid19patientsamulticentermachinelearningstudywithhighlygranulardatafromthedutchdatawarehouse