Cargando…

Angiogenesis and chemotherapy resistance: optimizing chemotherapy scheduling using mathematical modeling

Chemotherapy remains a widely used cancer treatment. Acquired drug resistance may greatly reduce the efficacy of treatment and means to overcome it are a topic of active discussion among researchers. One of the proposed solutions is to shift the therapeutic paradigm from complete eradication of canc...

Descripción completa

Detalles Bibliográficos
Autores principales: Bodzioch, Mariusz, Bajger, Piotr, Foryś, Urszula
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8236485/
https://www.ncbi.nlm.nih.gov/pubmed/34050795
http://dx.doi.org/10.1007/s00432-021-03657-9
Descripción
Sumario:Chemotherapy remains a widely used cancer treatment. Acquired drug resistance may greatly reduce the efficacy of treatment and means to overcome it are a topic of active discussion among researchers. One of the proposed solutions is to shift the therapeutic paradigm from complete eradication of cancer to maintenance, i.e., to treat it as a chronic disease. A concept of metronomic therapy (low chemotherapy doses applied continuously) emerged in early 2000s and was henceforth shown to offer a number of benefits, including targeting endothelial cells and reducing acquired drug resistance. Using mathematical modeling and optimal control techniques, we investigate the hypothesis that lower doses of chemotherapy are beneficial for patients. Our analysis of a mathematical model of tumor growth under angiogenic signaling proposed by Hahnfeldt et al. adapted to heterogeneous tumors treated by combined anti-angiogenic agent and chemotherapy offers insights into the effects of metronomic therapy. Firstly, assuming constant long-term drug delivery, the model suggests that the longest survival time is achieved for intermediate drug doses. Secondly, by formalizing the notion of the therapeutic target being maintenance rather than eradication, we show that in the short term, optimal chemotherapy scheduling consists mainly of a drug applied at a low dose. In conclusion, we suggest that metronomic therapy is an attractive alternative to maximum tolerated dose therapies to be investigated in experimental settings and clinical trials.