Cargando…
Ensuring the Robustness and Reliability of Data-Driven Knowledge Discovery Models in Production and Manufacturing
The Cross-Industry Standard Process for Data Mining (CRISP-DM) is a widely accepted framework in production and manufacturing. This data-driven knowledge discovery framework provides an orderly partition of the often complex data mining processes to ensure a practical implementation of data analytic...
Autores principales: | Tripathi, Shailesh, Muhr, David, Brunner, Manuel, Jodlbauer, Herbert, Dehmer, Matthias, Emmert-Streib, Frank |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8236533/ https://www.ncbi.nlm.nih.gov/pubmed/34195608 http://dx.doi.org/10.3389/frai.2021.576892 |
Ejemplares similares
-
An Introductory Review of Deep Learning for Prediction Models With Big Data
por: Emmert-Streib, Frank, et al.
Publicado: (2020) -
Artificial Intelligence: A Clarification of Misconceptions, Myths and Desired Status
por: Emmert-Streib, Frank, et al.
Publicado: (2020) -
Editorial: Artificial Intelligence for Precision Medicine
por: Deng, Jun, et al.
Publicado: (2022) -
Editorial: Insights in AI: Medicine and public health 2022
por: Hartung, Thomas, et al.
Publicado: (2023) -
Data-Driven Discovery of Mathematical and Physical Relations in Oncology Data Using Human-Understandable Machine Learning
por: Kurz, Daria, et al.
Publicado: (2021)