Cargando…

The need for validation of MI GPSai in patients with CUP: Comment on: “Machine learning analysis using 77,044 genomic and transcriptomic profiles to accurately predict tumor type” by J Abraham et al.

Detalles Bibliográficos
Autor principal: Greco, F. Anthony
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Neoplasia Press 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8236542/
https://www.ncbi.nlm.nih.gov/pubmed/34167744
http://dx.doi.org/10.1016/j.tranon.2021.101092
_version_ 1783714559659343872
author Greco, F. Anthony
author_facet Greco, F. Anthony
author_sort Greco, F. Anthony
collection PubMed
description
format Online
Article
Text
id pubmed-8236542
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Neoplasia Press
record_format MEDLINE/PubMed
spelling pubmed-82365422021-07-12 The need for validation of MI GPSai in patients with CUP: Comment on: “Machine learning analysis using 77,044 genomic and transcriptomic profiles to accurately predict tumor type” by J Abraham et al. Greco, F. Anthony Transl Oncol Letter to the Editor Neoplasia Press 2021-06-21 /pmc/articles/PMC8236542/ /pubmed/34167744 http://dx.doi.org/10.1016/j.tranon.2021.101092 Text en © 2021 The Authors. Published by Elsevier Inc. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Letter to the Editor
Greco, F. Anthony
The need for validation of MI GPSai in patients with CUP: Comment on: “Machine learning analysis using 77,044 genomic and transcriptomic profiles to accurately predict tumor type” by J Abraham et al.
title The need for validation of MI GPSai in patients with CUP: Comment on: “Machine learning analysis using 77,044 genomic and transcriptomic profiles to accurately predict tumor type” by J Abraham et al.
title_full The need for validation of MI GPSai in patients with CUP: Comment on: “Machine learning analysis using 77,044 genomic and transcriptomic profiles to accurately predict tumor type” by J Abraham et al.
title_fullStr The need for validation of MI GPSai in patients with CUP: Comment on: “Machine learning analysis using 77,044 genomic and transcriptomic profiles to accurately predict tumor type” by J Abraham et al.
title_full_unstemmed The need for validation of MI GPSai in patients with CUP: Comment on: “Machine learning analysis using 77,044 genomic and transcriptomic profiles to accurately predict tumor type” by J Abraham et al.
title_short The need for validation of MI GPSai in patients with CUP: Comment on: “Machine learning analysis using 77,044 genomic and transcriptomic profiles to accurately predict tumor type” by J Abraham et al.
title_sort need for validation of mi gpsai in patients with cup: comment on: “machine learning analysis using 77,044 genomic and transcriptomic profiles to accurately predict tumor type” by j abraham et al.
topic Letter to the Editor
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8236542/
https://www.ncbi.nlm.nih.gov/pubmed/34167744
http://dx.doi.org/10.1016/j.tranon.2021.101092
work_keys_str_mv AT grecofanthony theneedforvalidationofmigpsaiinpatientswithcupcommentonmachinelearninganalysisusing77044genomicandtranscriptomicprofilestoaccuratelypredicttumortypebyjabrahametal
AT grecofanthony needforvalidationofmigpsaiinpatientswithcupcommentonmachinelearninganalysisusing77044genomicandtranscriptomicprofilestoaccuratelypredicttumortypebyjabrahametal