Cargando…
Improvement of EMG Pattern Recognition Model Performance in Repeated Uses by Combining Feature Selection and Incremental Transfer Learning
Electromyography (EMG) pattern recognition is one of the widely used methods to control the rehabilitation robots and prostheses. However, the changes in the distribution of EMG data due to electrodes shifting results in classification decline, which hinders its clinical application in repeated uses...
Autores principales: | Li, Qi, Zhang, Anyuan, Li, Zhenlan, Wu, Yan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8236575/ https://www.ncbi.nlm.nih.gov/pubmed/34194311 http://dx.doi.org/10.3389/fnbot.2021.699174 |
Ejemplares similares
-
LST-EMG-Net: Long short-term transformer feature fusion network for sEMG gesture recognition
por: Zhang, Wenli, et al.
Publicado: (2023) -
Toward Hand Pattern Recognition in Assistive and Rehabilitation Robotics Using EMG and Kinematics
por: Zhou, Hui, et al.
Publicado: (2021) -
Cross-Subject EEG Feature Selection for Emotion Recognition Using Transfer Recursive Feature Elimination
por: Yin, Zhong, et al.
Publicado: (2017) -
Evaluating EMG Feature and Classifier Selection for Application to Partial-Hand Prosthesis Control
por: Adewuyi, Adenike A., et al.
Publicado: (2016) -
Self-Recalibrating Surface EMG Pattern Recognition for Neuroprosthesis Control Based on Convolutional Neural Network
por: Zhai, Xiaolong, et al.
Publicado: (2017)