Cargando…
Temporal Integration of Text Transcripts and Acoustic Features for Alzheimer's Diagnosis Based on Spontaneous Speech
Background: Advances in machine learning (ML) technology have opened new avenues for detection and monitoring of cognitive decline. In this study, a multimodal approach to Alzheimer's dementia detection based on the patient's spontaneous speech is presented. This approach was tested on a s...
Autores principales: | Martinc, Matej, Haider, Fasih, Pollak, Senja, Luz, Saturnino |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8236853/ https://www.ncbi.nlm.nih.gov/pubmed/34194313 http://dx.doi.org/10.3389/fnagi.2021.642647 |
Ejemplares similares
-
autoBOT: evolving neuro-symbolic representations for explainable low resource text classification
por: Škrlj, Blaž, et al.
Publicado: (2021) -
Editorial: Alzheimer’s Dementia Recognition through Spontaneous Speech
por: Luz, Saturnino, et al.
Publicado: (2021) -
Efficient Pause Extraction and Encode Strategy for Alzheimer’s Disease Detection Using Only Acoustic Features from Spontaneous Speech
por: Liu, Jiamin, et al.
Publicado: (2023) -
Acoustic and Language Based Deep Learning Approaches for Alzheimer's Dementia Detection From Spontaneous Speech
por: Mahajan, Pranav, et al.
Publicado: (2021) -
Spontaneous Neural Activity in the Superior Temporal Gyrus Recapitulates Tuning for Speech Features
por: Breshears, Jonathan D., et al.
Publicado: (2018)