Cargando…
AUCseg: An Automatically Unsupervised Clustering Toolbox for 3D-Segmentation of High-Grade Gliomas in Multi-Parametric MR Images
The segmentation of high-grade gliomas (HGG) using magnetic resonance imaging (MRI) data is clinically meaningful in neurosurgical practice, but a challenging task. Currently, most segmentation methods are supervised learning with labeled training sets. Although these methods work well in most cases...
Autores principales: | Zhao, Botao, Ren, Yan, Yu, Ziqi, Yu, Jinhua, Peng, Tingying, Zhang, Xiao-Yong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8236895/ https://www.ncbi.nlm.nih.gov/pubmed/34195080 http://dx.doi.org/10.3389/fonc.2021.679952 |
Ejemplares similares
-
Rough-Fuzzy Clustering and Unsupervised Feature Selection for Wavelet Based MR Image Segmentation
por: Maji, Pradipta, et al.
Publicado: (2015) -
Computer-Aided Grading of Gliomas Combining Automatic Segmentation and Radiomics
por: Chen, Wei, et al.
Publicado: (2018) -
Correction: Rough-Fuzzy Clustering and Unsupervised Feature Selection for Wavelet Based MR Image Segmentation
Publicado: (2015) -
Automatic Passenger Counting on the Edge via Unsupervised Clustering
por: Delzanno, Giorgio, et al.
Publicado: (2023) -
Comparison of unsupervised classification methods for brain tumor segmentation using multi-parametric MRI
por: Sauwen, N., et al.
Publicado: (2016)