Cargando…
Development and Comparison of Machine Learning Algorithms to Determine Visual Field Progression
PURPOSE: To develop and test machine learning classifiers (MLCs) for determining visual field progression. METHODS: In total, 90,713 visual fields from 13,156 eyes were included. Six different progression algorithms (linear regression of mean deviation, linear regression of the visual field index, A...
Autores principales: | Saeedi, Osamah, Boland, Michael V., D'Acunto, Loris, Swamy, Ramya, Hegde, Vikram, Gupta, Surabhi, Venjara, Amin, Tsai, Joby, Myers, Jonathan S., Wellik, Sarah R., DeMoraes, Gustavo, Pasquale, Louis R., Shen, Lucy Q., Li, Yangjiani, Elze, Tobias |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Association for Research in Vision and Ophthalmology
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8237084/ https://www.ncbi.nlm.nih.gov/pubmed/34157101 http://dx.doi.org/10.1167/tvst.10.7.27 |
Ejemplares similares
-
An Artificial Intelligence Approach to Detect Visual Field Progression in Glaucoma Based on Spatial Pattern Analysis
por: Wang, Mengyu, et al.
Publicado: (2019) -
Impact of Natural Blind Spot Location on Perimetry
por: Wang, Mengyu, et al.
Publicado: (2017) -
Predicting eyes at risk for rapid glaucoma progression based on an initial visual field test using machine learning
por: Shuldiner, Scott R., et al.
Publicado: (2021) -
Assessing Surface Shapes of the Optic Nerve Head and Peripapillary Retinal Nerve Fiber Layer in Glaucoma with Artificial Intelligence
por: Saini, Chhavi, et al.
Publicado: (2022) -
Improving Visual Field Forecasting by Correcting for the Effects of Poor Visual Field Reliability
por: Villasana, Gabriel A., et al.
Publicado: (2022)