Cargando…

Small RNA Sequencing of Aqueous Humor and Plasma in Patients With Primary Open-Angle Glaucoma

PURPOSE: Identify differentially expressed microRNAs (miRNAs) in aqueous humor (AH) and blood of primary open-angle glaucoma (POAG) patients by using small RNA sequencing. These may provide insight into POAG pathophysiology or serve as diagnostic biomarker. METHODS: AH and plasma of nine POAG patien...

Descripción completa

Detalles Bibliográficos
Autores principales: Hubens, Wouter H. G., Krauskopf, Julian, Beckers, Henny J. M., Kleinjans, Jos C. S., Webers, Carroll A. B., Gorgels, Theo G. M. F.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Association for Research in Vision and Ophthalmology 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8237107/
https://www.ncbi.nlm.nih.gov/pubmed/34156425
http://dx.doi.org/10.1167/iovs.62.7.24
Descripción
Sumario:PURPOSE: Identify differentially expressed microRNAs (miRNAs) in aqueous humor (AH) and blood of primary open-angle glaucoma (POAG) patients by using small RNA sequencing. These may provide insight into POAG pathophysiology or serve as diagnostic biomarker. METHODS: AH and plasma of nine POAG patients and 10 cataract control patients were small RNA sequenced on Illumina NovaSeq 6000. Identification of gene transcripts targeted by differentially expressed miRNAs was done with miRWalk and MirPath. These targets were used for pathway analysis and Gene Ontology enrichment. Diagnostic potential was evaluated by receiver operating characteristics analysis. RESULTS: We identified 715 miRNAs in plasma and 62 miRNAs in AH. Plasma miRNA profile did not differ between POAG and control. In contrast, in AH, seven miRNAs were differentially expressed. Hsa-miR-30a-3p, hsa-miR-143-3p, hsa-miR-211-5p, and hsa-miR-221-3p were upregulated, whereas hsa-miR-92a-3p, hsa-miR-451a, and hsa-miR-486-5p were downregulated in POAG. Compared to previous studies, hsa-mir-143-3p, hsa-miR-211-5p, and hsa-miR-221-3p were reported previously, strengthening their involvement in POAG whereas hsa-miR-30a-3p, hsa-miR-92a-3p, and hsa-miR-486-5p are implicated in POAG for the first time. Identified gene transcripts were involved in several pathways, some implicated in glaucoma before (e.g., TGF-β and neurotrophin signaling), whereas others are new (e.g., prolactin and apelin signaling). In respect to diagnostics, AH concentration of hsa-mir-143-3p had an area under the curve (AUC) of 0.889. Combined with hsa-miR-221-3p, AUC improved to 0.96. CONCLUSIONS: Small RNA sequencing identified seven differentially expressed miRNAs in AH of POAG patients. The differentially expressed miRNAs may be useful as POAG biomarkers or could become targets for new therapeutic strategies.