Cargando…
Disruption of anchoring junctions in the testes of experimental varicocele rats
Varicocele is a common disease of the male reproductive system and is the main cause of male infertility; however, the pathological mechanisms of varicocele remain unclear. The anchoring junctions (AJs) in the testies are located between Sertoli cells, or between Sertoli cells and germ cells. Intact...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
D.A. Spandidos
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8237278/ https://www.ncbi.nlm.nih.gov/pubmed/34194565 http://dx.doi.org/10.3892/etm.2021.10319 |
_version_ | 1783714698122756096 |
---|---|
author | Zhang, Lihong Zhao, Xiaozhen Wang, Wei |
author_facet | Zhang, Lihong Zhao, Xiaozhen Wang, Wei |
author_sort | Zhang, Lihong |
collection | PubMed |
description | Varicocele is a common disease of the male reproductive system and is the main cause of male infertility; however, the pathological mechanisms of varicocele remain unclear. The anchoring junctions (AJs) in the testies are located between Sertoli cells, or between Sertoli cells and germ cells. Intact and functional AJs are crucial for spermatogenesis. In the present study, the histomorphology, ultrastructure of AJ, cell cycle, expression of AJ structural proteins, and the level of AJ-associated signaling molecules were investigated in the left testes of experimental varicocele rats at 8 and 12 weeks after surgery. The results revealed that varicocele induced the loss of premature germ cells from the seminiferous epithelium. Furthermore, the results of the present study also revealed damage to the AJ ultrastructure, disorientation of the spermatid head, deregulation of the cell cycle, downregulation of AJ structural proteins, enhanced phosphorylation of focal adhesion kinase (FAK) at Tyr(397) and its downstream adapter Src at Tyr(416), and activation of the extracellular signal-regulated protein kinase 1 (ERK1) signaling pathway. Thus, the present study demonstrated that varicocele disrupted the structure and function of AJs in the left testes of rats, and that enhancement of FAK phosphorylation may contribute to AJ damage by activating ERK1 signaling, disrupting actin-based filament networks, and altering the balance of the apical ectoplasmic specialization-blood testis barrier functional axis. These findings provide important insights into the pathological mechanisms through which varicocele contributes to male infertility and could help to identify new therapeutic targets for varicocele. |
format | Online Article Text |
id | pubmed-8237278 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | D.A. Spandidos |
record_format | MEDLINE/PubMed |
spelling | pubmed-82372782021-06-29 Disruption of anchoring junctions in the testes of experimental varicocele rats Zhang, Lihong Zhao, Xiaozhen Wang, Wei Exp Ther Med Articles Varicocele is a common disease of the male reproductive system and is the main cause of male infertility; however, the pathological mechanisms of varicocele remain unclear. The anchoring junctions (AJs) in the testies are located between Sertoli cells, or between Sertoli cells and germ cells. Intact and functional AJs are crucial for spermatogenesis. In the present study, the histomorphology, ultrastructure of AJ, cell cycle, expression of AJ structural proteins, and the level of AJ-associated signaling molecules were investigated in the left testes of experimental varicocele rats at 8 and 12 weeks after surgery. The results revealed that varicocele induced the loss of premature germ cells from the seminiferous epithelium. Furthermore, the results of the present study also revealed damage to the AJ ultrastructure, disorientation of the spermatid head, deregulation of the cell cycle, downregulation of AJ structural proteins, enhanced phosphorylation of focal adhesion kinase (FAK) at Tyr(397) and its downstream adapter Src at Tyr(416), and activation of the extracellular signal-regulated protein kinase 1 (ERK1) signaling pathway. Thus, the present study demonstrated that varicocele disrupted the structure and function of AJs in the left testes of rats, and that enhancement of FAK phosphorylation may contribute to AJ damage by activating ERK1 signaling, disrupting actin-based filament networks, and altering the balance of the apical ectoplasmic specialization-blood testis barrier functional axis. These findings provide important insights into the pathological mechanisms through which varicocele contributes to male infertility and could help to identify new therapeutic targets for varicocele. D.A. Spandidos 2021-08 2021-06-16 /pmc/articles/PMC8237278/ /pubmed/34194565 http://dx.doi.org/10.3892/etm.2021.10319 Text en Copyright: © Zhang et al. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License (https://creativecommons.org/licenses/by-nc-nd/4.0/) , which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made. |
spellingShingle | Articles Zhang, Lihong Zhao, Xiaozhen Wang, Wei Disruption of anchoring junctions in the testes of experimental varicocele rats |
title | Disruption of anchoring junctions in the testes of experimental varicocele rats |
title_full | Disruption of anchoring junctions in the testes of experimental varicocele rats |
title_fullStr | Disruption of anchoring junctions in the testes of experimental varicocele rats |
title_full_unstemmed | Disruption of anchoring junctions in the testes of experimental varicocele rats |
title_short | Disruption of anchoring junctions in the testes of experimental varicocele rats |
title_sort | disruption of anchoring junctions in the testes of experimental varicocele rats |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8237278/ https://www.ncbi.nlm.nih.gov/pubmed/34194565 http://dx.doi.org/10.3892/etm.2021.10319 |
work_keys_str_mv | AT zhanglihong disruptionofanchoringjunctionsinthetestesofexperimentalvaricocelerats AT zhaoxiaozhen disruptionofanchoringjunctionsinthetestesofexperimentalvaricocelerats AT wangwei disruptionofanchoringjunctionsinthetestesofexperimentalvaricocelerats |