Cargando…

Managing cassava growth on nutrient poor soils under different water stress conditions

Nitrogen (N), phosphorus (P) and potassium (K) fertiliser application, was able to counteract growth reductions, in cassava cultivated on nutrient poor soils, under one water stress condition. It however remains to be seen, whether N, P and K fertiliser application, would produce similar results, ac...

Descripción completa

Detalles Bibliográficos
Autores principales: Imakumbili, Matema L.E., Semu, Ernest, Semoka, Johnson M.R., Abass, Adebayo, Mkamilo, Geoffrey
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8237305/
https://www.ncbi.nlm.nih.gov/pubmed/34195433
http://dx.doi.org/10.1016/j.heliyon.2021.e07331
Descripción
Sumario:Nitrogen (N), phosphorus (P) and potassium (K) fertiliser application, was able to counteract growth reductions, in cassava cultivated on nutrient poor soils, under one water stress condition. It however remains to be seen, whether N, P and K fertiliser application, would produce similar results, across different water stress conditions. A study was therefore conducted to determine how N, P and K fertiliser application, would influence cassava growth on nutrient poor soils, under various water stress conditions. Effects on new leaf formation and leaf size were also investigated. The study was a 2×3×4 factorial pot experiment, in a randomised complete block design. It included: two cassava varieties, three water stress levels and four fertiliser treatments. The water stress levels kept some plants watered at field capacities of 30% (severe water stress), 60% (mild water stress) and 100% (zero water stress). The fertiliser treatments consisted of a control (no fertiliser), a sole K fertiliser treatment (25 mg K/kg), a moderate N, P and K fertiliser treatment (25 mg N + 5 mg P + 25 mg K/kg) and a high N, P and K fertiliser treatment (50 mg N + 13 mg P + 50 mg K/kg). All data were analysed using the analysis of variance. Cassava growth was assessed by monitoring changes in the dry shoot mass of cassava plants. High and moderate N, P and K fertiliser application, produced cassava plants with higher and similar dry shoot masses, under mild water stress (10.5 g/plant, SE = 0.6 and 9.0 g/plant, SE = 0.6, respectively). High N, P and K fertiliser application, however gave cassava the highest dry shoot mass, under severe water stress (7.9 g/plant, SE = 0.4). Relatively high cassava growth was consistently achieved with high N, P and K fertiliser application, across all water stress conditions.