Cargando…
Selective oversampling approach for strongly imbalanced data
Challenges posed by imbalanced data are encountered in many real-world applications. One of the possible approaches to improve the classifier performance on imbalanced data is oversampling. In this paper, we propose the new selective oversampling approach (SOA) that first isolates the most represent...
Autores principales: | Gnip, Peter, Vokorokos, Liberios, Drotár, Peter |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8237317/ https://www.ncbi.nlm.nih.gov/pubmed/34239981 http://dx.doi.org/10.7717/peerj-cs.604 |
Ejemplares similares
-
Network intrusion detection using oversampling technique and machine learning algorithms
por: Ahmed, Hafiza Anisa, et al.
Publicado: (2022) -
Predicting defects in imbalanced data using resampling methods: an empirical investigation
por: Malhotra, Ruchika, et al.
Publicado: (2022) -
An empirical Bayes approach to stochastic blockmodels and graphons: shrinkage estimation and model selection
por: Peng, Zhanhao, et al.
Publicado: (2022) -
A selective approach to stemming for minimizing the risk of failure in information retrieval systems
por: Göksel, Gökhan, et al.
Publicado: (2023) -
Determining the factors affecting customer satisfaction using an extraction-based feature selection approach
por: Wu, Weishen, et al.
Publicado: (2022)