Cargando…
Matching sensor ontologies through siamese neural networks without using reference alignment
Sensors have been growingly used in a variety of applications. The lack of semantic information of obtained sensor data will bring about the heterogeneity problem of sensor data in semantic, schema, and syntax levels. To solve the heterogeneity problem of sensor data, it is necessary to carry out th...
Autores principales: | Xue, Xingsi, Jiang, Chao, Zhang, Jie, Zhu, Hai, Yang, Chaofan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8237319/ https://www.ncbi.nlm.nih.gov/pubmed/34239980 http://dx.doi.org/10.7717/peerj-cs.602 |
Ejemplares similares
-
Matching sensor ontologies with unsupervised neural network with competitive learning
por: Xue, Xingsi, et al.
Publicado: (2021) -
Approximate spectral clustering using both reference vectors and topology of the network generated by growing neural gas
por: Fujita, Kazuhisa
Publicado: (2021) -
A convolutional neural networks based approach for clustering of emotional elements in art design
por: Rui, Xue
Publicado: (2023) -
Player-aware resource compensation in interrupted cricket matches
por: Zia, Salam, et al.
Publicado: (2022) -
Evaluating graph neural networks under graph sampling scenarios
por: Wei, Qiang, et al.
Publicado: (2022)