Cargando…
Investigating cross-lingual training for offensive language detection
Platforms that feature user-generated content (social media, online forums, newspaper comment sections etc.) have to detect and filter offensive speech within large, fast-changing datasets. While many automatic methods have been proposed and achieve good accuracies, most of these focus on the Englis...
Autores principales: | Pelicon, Andraž, Shekhar, Ravi, Škrlj, Blaž, Purver, Matthew, Pollak, Senja |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8237322/ https://www.ncbi.nlm.nih.gov/pubmed/34239970 http://dx.doi.org/10.7717/peerj-cs.559 |
Ejemplares similares
-
Natural language inference for Malayalam language using language agnostic sentence representation
por: Renjit, Sara, et al.
Publicado: (2021) -
Fake news detection in Urdu language using machine learning
por: Farooq, Muhammad Shoaib, et al.
Publicado: (2023) -
Abusive language detection in youtube comments leveraging replies as conversational context
por: Ashraf, Noman, et al.
Publicado: (2021) -
BengSentiLex and BengSwearLex: creating lexicons for sentiment analysis and profanity detection in low-resource Bengali language
por: Sazzed, Salim
Publicado: (2021) -
Recognition of Urdu sign language: a systematic review of the machine learning classification
por: Zahid, Hira, et al.
Publicado: (2022)