Cargando…

Recent progress of surface plasmon resonance in the development of coronavirus disease-2019 drug candidates

At the end of 2019, the new coronavirus caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) suddenly raged, bringing a severe public health crisis to the world. It is urgent to discover suitable drugs and treatment regimens against this coronavirus disease 2019 (COVID-19) and rela...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Qian, Liu, Zhenming
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Authors. Published by Elsevier Masson SAS. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8237387/
https://www.ncbi.nlm.nih.gov/pubmed/36304139
http://dx.doi.org/10.1016/j.ejmcr.2021.100003
Descripción
Sumario:At the end of 2019, the new coronavirus caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) suddenly raged, bringing a severe public health crisis to the world. It is urgent to discover suitable drugs and treatment regimens against this coronavirus disease 2019 (COVID-19) and related diseases. Based on the previous knowledge and experience in treating similar diseases, researchers have come up with hundreds of possible drug candidates in the shortest possible time. Based on surface plasmon resonance (SPR) technology, this review summarized the application of SPR technology in COVID-19 research from four aspects: the invasion mode of SARS-CoV-2 into host cells, antibody drug candidates for the treatment of COVID-19, small molecule drug repurposing and vaccines for COVID-19. SPR technology has gradually become a powerful tool to study the interaction between drugs and targets due to its high efficiency, automation, labeling-free and high data resolution. The use of SPR technology can not only obtain the affinity data between drugs and targets, but also clarify the binding sites and mechanisms of drugs. We hope that this review can provide a reference for the subsequent application of SPR technology in antiviral drug development.