Cargando…
Identification of the high-risk area for schistosomiasis transmission in China based on information value and machine learning: a newly data-driven modeling attempt
BACKGROUND: Schistosomiasis control is striving forward to transmission interruption and even elimination, evidence-lead control is of vital importance to eliminate the hidden dangers of schistosomiasis. This study attempts to identify high risk areas of schistosomiasis in China by using information...
Autores principales: | Gong, Yan-Feng, Zhu, Ling-Qian, Li, Yin-Long, Zhang, Li-Juan, Xue, Jing-Bo, Xia, Shang, Lv, Shan, Xu, Jing, Li, Shi-Zhu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8237418/ https://www.ncbi.nlm.nih.gov/pubmed/34176515 http://dx.doi.org/10.1186/s40249-021-00874-9 |
Ejemplares similares
-
Transmission Risk Predicting for Schistosomiasis in Mainland China by Exploring Ensemble Ecological Niche Modeling
por: Xue, Jingbo, et al.
Publicado: (2022) -
The Impact of Flooding on Snail Spread: The Case of Endemic Schistosomiasis Areas in Jiangxi Province, China
por: Lv, Shang-Biao, et al.
Publicado: (2023) -
Potential Impact of Climate Change on Schistosomiasis: A Global Assessment Attempt
por: Yang, Guo-Jing, et al.
Publicado: (2018) -
Imported Schistosomiasis, China, 2010–2018
por: Dai, Si-Min, et al.
Publicado: (2020) -
Assessment of the Transmission Risk of Schistosomiasis after Flooding — North Poyang Lake, Jiangxi Province, China, 2020
por: Lv, Shan, et al.
Publicado: (2021)