Cargando…
How well do genetic markers inform about responses to intraspecific admixture? A comparative analysis of microsatellites and RADseq
BACKGROUND: Fitness consequences of intraspecific genetic admixture can vary from positive to negative depending on the genetic composition of the populations and environmental conditions. Because admixture has potential to influence the success of management and conservation efforts, genetic simila...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8237422/ https://www.ncbi.nlm.nih.gov/pubmed/34182923 http://dx.doi.org/10.1186/s12863-021-00974-3 |
Sumario: | BACKGROUND: Fitness consequences of intraspecific genetic admixture can vary from positive to negative depending on the genetic composition of the populations and environmental conditions. Because admixture has potential to influence the success of management and conservation efforts, genetic similarity has been suggested to be used as a proxy to predict the outcome. Studies utilizing microsatellites (a neutral marker) to investigate associations between genetic distance and admixture effects show conflicting results. Marker types that yield information on genome-wide and/or adaptive variation might be more useful for predicting responses to inter-population hybridization. In this study we utilized published data for three populations of pike (Esox lucius) to investigate associations between offspring performance (hatching success) and parental genetic similarity in experimentally purebred and admixed families, based on neutral (microsatellites), genome-wide neutral (RADseq SNPs), and adaptive (SNPs under selection) markers. RESULTS: Estimated similarity varied among the markers, likely reflecting differences in their inherent properties, but was consistently higher in purebred than admixed families. A significant interaction between marker type and admixture treatment reflected that neutral SNPs yielded higher estimates than adaptive SNPs for admixed families whereas no difference was found for purebred families, which indicates that neutral similarity was not reflective of adaptive similarity. When all samples were pooled, no association between similarity and performance was found for any marker. For microsatellites, similarity was positively correlated with hatching success in purebred families, whereas no association was found in admixed families; however, the direction of the effect differed between the population combinations. CONCLUSIONS: The results strengthen the notion that, as of today, there is no proxy that can reliably predicted the outcome of admixture. This emphasizes the need of further studies to advance knowledge that can shed light on how to safeguard against negative consequences of admixture, and thereby inform management and promote conservation of biological diversity. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12863-021-00974-3. |
---|