Cargando…

Prospects and challenges of photocatalysis for degradation and mineralization of antiviral drugs

Among the outbreak of influenza and other pandemics such as SARS-CoV-2 recently over the globe, antiviral drugs were significantly concerned with controlling the disease and these pandemics. They have been developed for seven decades around more than 90 drugs categorized licensed to treat nine human...

Descripción completa

Detalles Bibliográficos
Autores principales: Thi, Lan-Anh Phan, Panchangam, Sri Chandana, Do, Huu-Tuan, Nguyen, Van-Huy
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8237458/
http://dx.doi.org/10.1016/B978-0-12-823007-7.00012-2
Descripción
Sumario:Among the outbreak of influenza and other pandemics such as SARS-CoV-2 recently over the globe, antiviral drugs were significantly concerned with controlling the disease and these pandemics. They have been developed for seven decades around more than 90 drugs categorized licensed to treat nine human infectious diseases. Based on their functional group, antiviral compounds will mitigate infectivity and symptoms and reduce the illness period by arresting the viral replication cycle at different stages. Antiviral drugs have been developed complexly and met many biothreat challenges due to their high biosafety level requirement. In recent years, the spreading of novel virus strains that are a threat to human life, the development in researching and manufacturing new types of antiviral drugs increases and the use by patients and clinicians have increased. Antiviral compounds have been reported only partly removed during wastewater treatment. They were available in wastewater treatment plant effluents and found in surface water from rivers and streams, underground water, and even in drinking water. Photocatalytic degradation of antiviral drugs was exploding to clear the environmental waters from the antiviral drugs. The principle of photocatalysis is based on the excitation of the catalyst material by irradiation of light. The catalyst produces free radicals under the action of photons, which will destroy the pollutants adsorbed on its surface. The photocatalytic degradation mechanism of antiviral drugs can be understood through decomposing in a heterogeneous photocatalytic system and which species are involved in the active decomposition of the drug and then photocatalytically degrading into intermediates or mineralization products. The intermediates and the reaction pathway of antiviral compound photocatalytic degradation are complicated. However, some of the degradation processes are complete, and inorganic compounds (CO(2) and H(2)O) are their final products.