Cargando…

Developing a second-generation clinical candidate AAV vector for gene therapy of familial hypercholesterolemia

Gene therapy for hypercholesterolemia offers the potential to sustainably ameliorate disease for life with a single dose. In this study, we demonstrate the combinatorial effects of codon and vector optimization, which significantly improve the efficacy of an adeno-associated virus (AAV) vector in th...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Lili, Muthuramu, Ilayaraja, Somanathan, Suryanarayan, Zhang, Hong, Bell, Peter, He, Zhenning, Yu, Hongwei, Zhu, Yanqing, Tretiakova, Anna P., Wilson, James M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society of Gene & Cell Therapy 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8237527/
https://www.ncbi.nlm.nih.gov/pubmed/34258325
http://dx.doi.org/10.1016/j.omtm.2021.04.017
Descripción
Sumario:Gene therapy for hypercholesterolemia offers the potential to sustainably ameliorate disease for life with a single dose. In this study, we demonstrate the combinatorial effects of codon and vector optimization, which significantly improve the efficacy of an adeno-associated virus (AAV) vector in the low-density lipoprotein receptor (LDLR)-deficient mouse model (Ldlr(−/−), Apobec1(−/−) double knockout [DKO]). This study investigated vector efficacy following the combination of intervening sequence 2 (IVS2) of the human beta-globin gene and codon optimization with the previously developed gain-of-function, human LDLR triple-mutant variant (hLDLR-L318D/K809R/C818A) in the treatment of homozygous familial hypercholesterolemia (HoFH). Vector doses as low as 3 × 10(11) genome copies (GC)/kg achieved a robust reduction of serum low-density lipoprotein cholesterol (LDL-C) by 98% in male LDLR-deficient mice. Less efficient LDL-C reduction was observed in female mice, which was attributable to lower gene transfer efficiency in liver. We also observed persistent and stable transgene expression for 120 days, with LDL-C levels being undetectable in male DKO mice treated with the second-generation vector. In conclusion, codon and vector optimization enhanced transgene expression and reduced serum LDL-C levels effectively at a lower dose in LDLR-deficient mice. The second-generation clinical candidate vector we have developed has the potential to achieve therapeutic effects in HoFH patients.