Cargando…

Validating model-based Bayesian integration using prior–cost metamers

There are two competing views on how humans make decisions under uncertainty. Bayesian decision theory posits that humans optimize their behavior by establishing and integrating internal models of past sensory experiences (priors) and decision outcomes (cost functions). An alternative hypothesis pos...

Descripción completa

Detalles Bibliográficos
Autores principales: Sohn, Hansem, Jazayeri, Mehrdad
Formato: Online Artículo Texto
Lenguaje:English
Publicado: National Academy of Sciences 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8237636/
https://www.ncbi.nlm.nih.gov/pubmed/34161261
http://dx.doi.org/10.1073/pnas.2021531118
Descripción
Sumario:There are two competing views on how humans make decisions under uncertainty. Bayesian decision theory posits that humans optimize their behavior by establishing and integrating internal models of past sensory experiences (priors) and decision outcomes (cost functions). An alternative hypothesis posits that decisions are optimized through trial and error without explicit internal models for priors and cost functions. To distinguish between these possibilities, we introduce a paradigm that probes the sensitivity of humans to transitions between prior–cost pairs that demand the same optimal policy (metamers) but distinct internal models. We demonstrate the utility of our approach in two experiments that were classically explained by Bayesian theory. Our approach validates the Bayesian learning strategy in an interval timing task but not in a visuomotor rotation task. More generally, our work provides a domain-general approach for testing the circumstances under which humans explicitly implement model-based Bayesian computations.