Cargando…
A Machine Learning Method to Identify Genetic Variants Potentially Associated With Alzheimer’s Disease
There is hope that genomic information will assist prediction, treatment, and understanding of Alzheimer’s disease (AD). Here, using exome data from ∼10,000 individuals, we explore machine learning neural network (NN) methods to estimate the impact of SNPs (i.e., genetic variants) on AD risk. We dev...
Autores principales: | Monk, Bradley, Rajkovic, Andrei, Petrus, Semar, Rajkovic, Aleks, Gaasterland, Terry, Malinow, Roberto |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8238203/ https://www.ncbi.nlm.nih.gov/pubmed/34194466 http://dx.doi.org/10.3389/fgene.2021.647436 |
Ejemplares similares
-
Integration of Machine Learning Methods to Dissect Genetically Imputed Transcriptomic Profiles in Alzheimer’s Disease
por: Maj, Carlo, et al.
Publicado: (2019) -
Machine Learning Identifies Six Genetic Variants and Alterations in the Heart Atrial Appendage as Key Contributors to PD Risk Predictivity
por: Ho, Daniel, et al.
Publicado: (2022) -
Machine learning methods applied to genotyping data capture interactions between single nucleotide variants in late onset Alzheimer's disease
por: Arnal Segura, Magdalena, et al.
Publicado: (2022) -
The Effect of Alzheimer’s Disease-Associated Genetic Variants on Longevity
por: Tesi, Niccolò, et al.
Publicado: (2021) -
Identifying Key MicroRNA Signatures for Neurodegenerative Diseases With Machine Learning Methods
por: Li, ZhanDong, et al.
Publicado: (2022)