Cargando…
Replication of machine learning methods to predict treatment outcome with antidepressant medications in patients with major depressive disorder from STAR*D and CAN-BIND-1
OBJECTIVES: Antidepressants are first-line treatments for major depressive disorder (MDD), but 40–60% of patients will not respond, hence, predicting response would be a major clinical advance. Machine learning algorithms hold promise to predict treatment outcomes based on clinical symptoms and epis...
Autores principales: | Nunez, John-Jose, Nguyen, Teyden T., Zhou, Yihan, Cao, Bo, Ng, Raymond T., Chen, Jun, Frey, Benicio N., Milev, Roumen, Müller, Daniel J., Rotzinger, Susan, Soares, Claudio N., Uher, Rudolf, Kennedy, Sidney H., Lam, Raymond W. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8238228/ https://www.ncbi.nlm.nih.gov/pubmed/34181661 http://dx.doi.org/10.1371/journal.pone.0253023 |
Ejemplares similares
-
The Differential Relation of Emotional, Physical, and Sexual Abuse Histories to Antidepressant Treatment Remission and Persistence of Anhedonia in Major Depression: A CAN-BIND-1 Report
por: Harkness, Kate L., et al.
Publicado: (2023) -
Developing an Electroencephalography-Based Model for Predicting Response to Antidepressant Medication
por: Schwartzmann, Benjamin, et al.
Publicado: (2023) -
Metabolomic signatures associated with depression and predictors of antidepressant response in humans: A CAN-BIND-1 report
por: Caspani, Giorgia, et al.
Publicado: (2021) -
Treatment-emergent and trajectory-based peripheral gene expression markers of antidepressant response
por: Fiori, Laura M., et al.
Publicado: (2021) -
“One Degree of Separation”: A Mixed-Methods Evaluation of Canadian
Mental Health Care User and Provider Experiences With Remote Care During
COVID-19
por: Ceniti, Amanda K., et al.
Publicado: (2022)