Cargando…

Integrated analysis of multimodal single-cell data

The simultaneous measurement of multiple modalities represents an exciting frontier for single-cell genomics and necessitates computational methods that can define cellular states based on multimodal data. Here, we introduce “weighted-nearest neighbor” analysis, an unsupervised framework to learn th...

Descripción completa

Detalles Bibliográficos
Autores principales: Hao, Yuhan, Hao, Stephanie, Andersen-Nissen, Erica, Mauck, William M., Zheng, Shiwei, Butler, Andrew, Lee, Maddie J., Wilk, Aaron J., Darby, Charlotte, Zager, Michael, Hoffman, Paul, Stoeckius, Marlon, Papalexi, Efthymia, Mimitou, Eleni P., Jain, Jaison, Srivastava, Avi, Stuart, Tim, Fleming, Lamar M., Yeung, Bertrand, Rogers, Angela J., McElrath, Juliana M., Blish, Catherine A., Gottardo, Raphael, Smibert, Peter, Satija, Rahul
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cell Press 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8238499/
https://www.ncbi.nlm.nih.gov/pubmed/34062119
http://dx.doi.org/10.1016/j.cell.2021.04.048
_version_ 1783714909966565376
author Hao, Yuhan
Hao, Stephanie
Andersen-Nissen, Erica
Mauck, William M.
Zheng, Shiwei
Butler, Andrew
Lee, Maddie J.
Wilk, Aaron J.
Darby, Charlotte
Zager, Michael
Hoffman, Paul
Stoeckius, Marlon
Papalexi, Efthymia
Mimitou, Eleni P.
Jain, Jaison
Srivastava, Avi
Stuart, Tim
Fleming, Lamar M.
Yeung, Bertrand
Rogers, Angela J.
McElrath, Juliana M.
Blish, Catherine A.
Gottardo, Raphael
Smibert, Peter
Satija, Rahul
author_facet Hao, Yuhan
Hao, Stephanie
Andersen-Nissen, Erica
Mauck, William M.
Zheng, Shiwei
Butler, Andrew
Lee, Maddie J.
Wilk, Aaron J.
Darby, Charlotte
Zager, Michael
Hoffman, Paul
Stoeckius, Marlon
Papalexi, Efthymia
Mimitou, Eleni P.
Jain, Jaison
Srivastava, Avi
Stuart, Tim
Fleming, Lamar M.
Yeung, Bertrand
Rogers, Angela J.
McElrath, Juliana M.
Blish, Catherine A.
Gottardo, Raphael
Smibert, Peter
Satija, Rahul
author_sort Hao, Yuhan
collection PubMed
description The simultaneous measurement of multiple modalities represents an exciting frontier for single-cell genomics and necessitates computational methods that can define cellular states based on multimodal data. Here, we introduce “weighted-nearest neighbor” analysis, an unsupervised framework to learn the relative utility of each data type in each cell, enabling an integrative analysis of multiple modalities. We apply our procedure to a CITE-seq dataset of 211,000 human peripheral blood mononuclear cells (PBMCs) with panels extending to 228 antibodies to construct a multimodal reference atlas of the circulating immune system. Multimodal analysis substantially improves our ability to resolve cell states, allowing us to identify and validate previously unreported lymphoid subpopulations. Moreover, we demonstrate how to leverage this reference to rapidly map new datasets and to interpret immune responses to vaccination and coronavirus disease 2019 (COVID-19). Our approach represents a broadly applicable strategy to analyze single-cell multimodal datasets and to look beyond the transcriptome toward a unified and multimodal definition of cellular identity.
format Online
Article
Text
id pubmed-8238499
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Cell Press
record_format MEDLINE/PubMed
spelling pubmed-82384992021-06-29 Integrated analysis of multimodal single-cell data Hao, Yuhan Hao, Stephanie Andersen-Nissen, Erica Mauck, William M. Zheng, Shiwei Butler, Andrew Lee, Maddie J. Wilk, Aaron J. Darby, Charlotte Zager, Michael Hoffman, Paul Stoeckius, Marlon Papalexi, Efthymia Mimitou, Eleni P. Jain, Jaison Srivastava, Avi Stuart, Tim Fleming, Lamar M. Yeung, Bertrand Rogers, Angela J. McElrath, Juliana M. Blish, Catherine A. Gottardo, Raphael Smibert, Peter Satija, Rahul Cell Resource The simultaneous measurement of multiple modalities represents an exciting frontier for single-cell genomics and necessitates computational methods that can define cellular states based on multimodal data. Here, we introduce “weighted-nearest neighbor” analysis, an unsupervised framework to learn the relative utility of each data type in each cell, enabling an integrative analysis of multiple modalities. We apply our procedure to a CITE-seq dataset of 211,000 human peripheral blood mononuclear cells (PBMCs) with panels extending to 228 antibodies to construct a multimodal reference atlas of the circulating immune system. Multimodal analysis substantially improves our ability to resolve cell states, allowing us to identify and validate previously unreported lymphoid subpopulations. Moreover, we demonstrate how to leverage this reference to rapidly map new datasets and to interpret immune responses to vaccination and coronavirus disease 2019 (COVID-19). Our approach represents a broadly applicable strategy to analyze single-cell multimodal datasets and to look beyond the transcriptome toward a unified and multimodal definition of cellular identity. Cell Press 2021-06-24 /pmc/articles/PMC8238499/ /pubmed/34062119 http://dx.doi.org/10.1016/j.cell.2021.04.048 Text en © 2021 The Authors https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Resource
Hao, Yuhan
Hao, Stephanie
Andersen-Nissen, Erica
Mauck, William M.
Zheng, Shiwei
Butler, Andrew
Lee, Maddie J.
Wilk, Aaron J.
Darby, Charlotte
Zager, Michael
Hoffman, Paul
Stoeckius, Marlon
Papalexi, Efthymia
Mimitou, Eleni P.
Jain, Jaison
Srivastava, Avi
Stuart, Tim
Fleming, Lamar M.
Yeung, Bertrand
Rogers, Angela J.
McElrath, Juliana M.
Blish, Catherine A.
Gottardo, Raphael
Smibert, Peter
Satija, Rahul
Integrated analysis of multimodal single-cell data
title Integrated analysis of multimodal single-cell data
title_full Integrated analysis of multimodal single-cell data
title_fullStr Integrated analysis of multimodal single-cell data
title_full_unstemmed Integrated analysis of multimodal single-cell data
title_short Integrated analysis of multimodal single-cell data
title_sort integrated analysis of multimodal single-cell data
topic Resource
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8238499/
https://www.ncbi.nlm.nih.gov/pubmed/34062119
http://dx.doi.org/10.1016/j.cell.2021.04.048
work_keys_str_mv AT haoyuhan integratedanalysisofmultimodalsinglecelldata
AT haostephanie integratedanalysisofmultimodalsinglecelldata
AT andersennissenerica integratedanalysisofmultimodalsinglecelldata
AT mauckwilliamm integratedanalysisofmultimodalsinglecelldata
AT zhengshiwei integratedanalysisofmultimodalsinglecelldata
AT butlerandrew integratedanalysisofmultimodalsinglecelldata
AT leemaddiej integratedanalysisofmultimodalsinglecelldata
AT wilkaaronj integratedanalysisofmultimodalsinglecelldata
AT darbycharlotte integratedanalysisofmultimodalsinglecelldata
AT zagermichael integratedanalysisofmultimodalsinglecelldata
AT hoffmanpaul integratedanalysisofmultimodalsinglecelldata
AT stoeckiusmarlon integratedanalysisofmultimodalsinglecelldata
AT papalexiefthymia integratedanalysisofmultimodalsinglecelldata
AT mimitouelenip integratedanalysisofmultimodalsinglecelldata
AT jainjaison integratedanalysisofmultimodalsinglecelldata
AT srivastavaavi integratedanalysisofmultimodalsinglecelldata
AT stuarttim integratedanalysisofmultimodalsinglecelldata
AT fleminglamarm integratedanalysisofmultimodalsinglecelldata
AT yeungbertrand integratedanalysisofmultimodalsinglecelldata
AT rogersangelaj integratedanalysisofmultimodalsinglecelldata
AT mcelrathjulianam integratedanalysisofmultimodalsinglecelldata
AT blishcatherinea integratedanalysisofmultimodalsinglecelldata
AT gottardoraphael integratedanalysisofmultimodalsinglecelldata
AT smibertpeter integratedanalysisofmultimodalsinglecelldata
AT satijarahul integratedanalysisofmultimodalsinglecelldata