Cargando…
Integrated analysis of multimodal single-cell data
The simultaneous measurement of multiple modalities represents an exciting frontier for single-cell genomics and necessitates computational methods that can define cellular states based on multimodal data. Here, we introduce “weighted-nearest neighbor” analysis, an unsupervised framework to learn th...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cell Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8238499/ https://www.ncbi.nlm.nih.gov/pubmed/34062119 http://dx.doi.org/10.1016/j.cell.2021.04.048 |
_version_ | 1783714909966565376 |
---|---|
author | Hao, Yuhan Hao, Stephanie Andersen-Nissen, Erica Mauck, William M. Zheng, Shiwei Butler, Andrew Lee, Maddie J. Wilk, Aaron J. Darby, Charlotte Zager, Michael Hoffman, Paul Stoeckius, Marlon Papalexi, Efthymia Mimitou, Eleni P. Jain, Jaison Srivastava, Avi Stuart, Tim Fleming, Lamar M. Yeung, Bertrand Rogers, Angela J. McElrath, Juliana M. Blish, Catherine A. Gottardo, Raphael Smibert, Peter Satija, Rahul |
author_facet | Hao, Yuhan Hao, Stephanie Andersen-Nissen, Erica Mauck, William M. Zheng, Shiwei Butler, Andrew Lee, Maddie J. Wilk, Aaron J. Darby, Charlotte Zager, Michael Hoffman, Paul Stoeckius, Marlon Papalexi, Efthymia Mimitou, Eleni P. Jain, Jaison Srivastava, Avi Stuart, Tim Fleming, Lamar M. Yeung, Bertrand Rogers, Angela J. McElrath, Juliana M. Blish, Catherine A. Gottardo, Raphael Smibert, Peter Satija, Rahul |
author_sort | Hao, Yuhan |
collection | PubMed |
description | The simultaneous measurement of multiple modalities represents an exciting frontier for single-cell genomics and necessitates computational methods that can define cellular states based on multimodal data. Here, we introduce “weighted-nearest neighbor” analysis, an unsupervised framework to learn the relative utility of each data type in each cell, enabling an integrative analysis of multiple modalities. We apply our procedure to a CITE-seq dataset of 211,000 human peripheral blood mononuclear cells (PBMCs) with panels extending to 228 antibodies to construct a multimodal reference atlas of the circulating immune system. Multimodal analysis substantially improves our ability to resolve cell states, allowing us to identify and validate previously unreported lymphoid subpopulations. Moreover, we demonstrate how to leverage this reference to rapidly map new datasets and to interpret immune responses to vaccination and coronavirus disease 2019 (COVID-19). Our approach represents a broadly applicable strategy to analyze single-cell multimodal datasets and to look beyond the transcriptome toward a unified and multimodal definition of cellular identity. |
format | Online Article Text |
id | pubmed-8238499 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Cell Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-82384992021-06-29 Integrated analysis of multimodal single-cell data Hao, Yuhan Hao, Stephanie Andersen-Nissen, Erica Mauck, William M. Zheng, Shiwei Butler, Andrew Lee, Maddie J. Wilk, Aaron J. Darby, Charlotte Zager, Michael Hoffman, Paul Stoeckius, Marlon Papalexi, Efthymia Mimitou, Eleni P. Jain, Jaison Srivastava, Avi Stuart, Tim Fleming, Lamar M. Yeung, Bertrand Rogers, Angela J. McElrath, Juliana M. Blish, Catherine A. Gottardo, Raphael Smibert, Peter Satija, Rahul Cell Resource The simultaneous measurement of multiple modalities represents an exciting frontier for single-cell genomics and necessitates computational methods that can define cellular states based on multimodal data. Here, we introduce “weighted-nearest neighbor” analysis, an unsupervised framework to learn the relative utility of each data type in each cell, enabling an integrative analysis of multiple modalities. We apply our procedure to a CITE-seq dataset of 211,000 human peripheral blood mononuclear cells (PBMCs) with panels extending to 228 antibodies to construct a multimodal reference atlas of the circulating immune system. Multimodal analysis substantially improves our ability to resolve cell states, allowing us to identify and validate previously unreported lymphoid subpopulations. Moreover, we demonstrate how to leverage this reference to rapidly map new datasets and to interpret immune responses to vaccination and coronavirus disease 2019 (COVID-19). Our approach represents a broadly applicable strategy to analyze single-cell multimodal datasets and to look beyond the transcriptome toward a unified and multimodal definition of cellular identity. Cell Press 2021-06-24 /pmc/articles/PMC8238499/ /pubmed/34062119 http://dx.doi.org/10.1016/j.cell.2021.04.048 Text en © 2021 The Authors https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Resource Hao, Yuhan Hao, Stephanie Andersen-Nissen, Erica Mauck, William M. Zheng, Shiwei Butler, Andrew Lee, Maddie J. Wilk, Aaron J. Darby, Charlotte Zager, Michael Hoffman, Paul Stoeckius, Marlon Papalexi, Efthymia Mimitou, Eleni P. Jain, Jaison Srivastava, Avi Stuart, Tim Fleming, Lamar M. Yeung, Bertrand Rogers, Angela J. McElrath, Juliana M. Blish, Catherine A. Gottardo, Raphael Smibert, Peter Satija, Rahul Integrated analysis of multimodal single-cell data |
title | Integrated analysis of multimodal single-cell data |
title_full | Integrated analysis of multimodal single-cell data |
title_fullStr | Integrated analysis of multimodal single-cell data |
title_full_unstemmed | Integrated analysis of multimodal single-cell data |
title_short | Integrated analysis of multimodal single-cell data |
title_sort | integrated analysis of multimodal single-cell data |
topic | Resource |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8238499/ https://www.ncbi.nlm.nih.gov/pubmed/34062119 http://dx.doi.org/10.1016/j.cell.2021.04.048 |
work_keys_str_mv | AT haoyuhan integratedanalysisofmultimodalsinglecelldata AT haostephanie integratedanalysisofmultimodalsinglecelldata AT andersennissenerica integratedanalysisofmultimodalsinglecelldata AT mauckwilliamm integratedanalysisofmultimodalsinglecelldata AT zhengshiwei integratedanalysisofmultimodalsinglecelldata AT butlerandrew integratedanalysisofmultimodalsinglecelldata AT leemaddiej integratedanalysisofmultimodalsinglecelldata AT wilkaaronj integratedanalysisofmultimodalsinglecelldata AT darbycharlotte integratedanalysisofmultimodalsinglecelldata AT zagermichael integratedanalysisofmultimodalsinglecelldata AT hoffmanpaul integratedanalysisofmultimodalsinglecelldata AT stoeckiusmarlon integratedanalysisofmultimodalsinglecelldata AT papalexiefthymia integratedanalysisofmultimodalsinglecelldata AT mimitouelenip integratedanalysisofmultimodalsinglecelldata AT jainjaison integratedanalysisofmultimodalsinglecelldata AT srivastavaavi integratedanalysisofmultimodalsinglecelldata AT stuarttim integratedanalysisofmultimodalsinglecelldata AT fleminglamarm integratedanalysisofmultimodalsinglecelldata AT yeungbertrand integratedanalysisofmultimodalsinglecelldata AT rogersangelaj integratedanalysisofmultimodalsinglecelldata AT mcelrathjulianam integratedanalysisofmultimodalsinglecelldata AT blishcatherinea integratedanalysisofmultimodalsinglecelldata AT gottardoraphael integratedanalysisofmultimodalsinglecelldata AT smibertpeter integratedanalysisofmultimodalsinglecelldata AT satijarahul integratedanalysisofmultimodalsinglecelldata |