Cargando…

Prediction and Early Warning of Regional Coordinated Development Based on Convolution Neural Network Algorithm

In order to respond to the regional coordinated development of the country, it is necessary to put forward a method that can predict and analyze the development trend according to the current development situation. In view of this, the research will carry on the present situation and forecast analys...

Descripción completa

Detalles Bibliográficos
Autor principal: Wen, Xue
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8238609/
https://www.ncbi.nlm.nih.gov/pubmed/34239552
http://dx.doi.org/10.1155/2021/7143246
Descripción
Sumario:In order to respond to the regional coordinated development of the country, it is necessary to put forward a method that can predict and analyze the development trend according to the current development situation. In view of this, the research will carry on the present situation and forecast analysis to the coordinated development of urban agglomeration in Western China. Firstly, the 3E system is used to establish the regional coordination degree evaluation model, and on this basis, the ellipsoid model is introduced for better coordination degree evaluation. In addition, in order to improve the prediction ability of the model, the convolution neural network is used to realize the big data analysis of the model. The results show that the overall coordination degree of the western urban agglomeration is in a weak coordination state in 2015, but the coordination degree of the region will reach 147.35 in 2020. The results show that the overall coordination degree of western urban agglomeration will gradually show a good trend, but the change speed is slow. The above results show that the prediction model in the study has strong practicability, the calculation results can fit the current situation, and the good prediction ability can provide decision-making suggestions for many governments.