Cargando…
A control framework to optimize public health policies in the course of the COVID-19 pandemic
The SARS-CoV-2 pandemic triggered substantial economic and social disruptions. Mitigation policies varied across countries based on resources, political conditions, and human behavior. In the absence of widespread vaccination able to induce herd immunity, strategies to coexist with the virus while m...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8239053/ https://www.ncbi.nlm.nih.gov/pubmed/34183727 http://dx.doi.org/10.1038/s41598-021-92636-8 |
_version_ | 1783715005268492288 |
---|---|
author | Pataro, Igor M. L. Oliveira, Juliane F. Morato, Marcelo M. Amad, Alan A. S. Ramos, Pablo I. P. Pereira, Felipe A. C. Silva, Mateus S. Jorge, Daniel C. P. Andrade, Roberto F. S. Barreto, Mauricio L. Costa, Marcus Americano da |
author_facet | Pataro, Igor M. L. Oliveira, Juliane F. Morato, Marcelo M. Amad, Alan A. S. Ramos, Pablo I. P. Pereira, Felipe A. C. Silva, Mateus S. Jorge, Daniel C. P. Andrade, Roberto F. S. Barreto, Mauricio L. Costa, Marcus Americano da |
author_sort | Pataro, Igor M. L. |
collection | PubMed |
description | The SARS-CoV-2 pandemic triggered substantial economic and social disruptions. Mitigation policies varied across countries based on resources, political conditions, and human behavior. In the absence of widespread vaccination able to induce herd immunity, strategies to coexist with the virus while minimizing risks of surges are paramount, which should work in parallel with reopening societies. To support these strategies, we present a predictive control system coupled with a nonlinear model able to optimize the level of policies to stop epidemic growth. We applied this system to study the unfolding of COVID-19 in Bahia, Brazil, also assessing the effects of varying population compliance. We show the importance of finely tuning the levels of enforced measures to achieve SARS-CoV-2 containment, with periodic interventions emerging as an optimal control strategy in the long-term. |
format | Online Article Text |
id | pubmed-8239053 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-82390532021-07-06 A control framework to optimize public health policies in the course of the COVID-19 pandemic Pataro, Igor M. L. Oliveira, Juliane F. Morato, Marcelo M. Amad, Alan A. S. Ramos, Pablo I. P. Pereira, Felipe A. C. Silva, Mateus S. Jorge, Daniel C. P. Andrade, Roberto F. S. Barreto, Mauricio L. Costa, Marcus Americano da Sci Rep Article The SARS-CoV-2 pandemic triggered substantial economic and social disruptions. Mitigation policies varied across countries based on resources, political conditions, and human behavior. In the absence of widespread vaccination able to induce herd immunity, strategies to coexist with the virus while minimizing risks of surges are paramount, which should work in parallel with reopening societies. To support these strategies, we present a predictive control system coupled with a nonlinear model able to optimize the level of policies to stop epidemic growth. We applied this system to study the unfolding of COVID-19 in Bahia, Brazil, also assessing the effects of varying population compliance. We show the importance of finely tuning the levels of enforced measures to achieve SARS-CoV-2 containment, with periodic interventions emerging as an optimal control strategy in the long-term. Nature Publishing Group UK 2021-06-28 /pmc/articles/PMC8239053/ /pubmed/34183727 http://dx.doi.org/10.1038/s41598-021-92636-8 Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Pataro, Igor M. L. Oliveira, Juliane F. Morato, Marcelo M. Amad, Alan A. S. Ramos, Pablo I. P. Pereira, Felipe A. C. Silva, Mateus S. Jorge, Daniel C. P. Andrade, Roberto F. S. Barreto, Mauricio L. Costa, Marcus Americano da A control framework to optimize public health policies in the course of the COVID-19 pandemic |
title | A control framework to optimize public health policies in the course of the COVID-19 pandemic |
title_full | A control framework to optimize public health policies in the course of the COVID-19 pandemic |
title_fullStr | A control framework to optimize public health policies in the course of the COVID-19 pandemic |
title_full_unstemmed | A control framework to optimize public health policies in the course of the COVID-19 pandemic |
title_short | A control framework to optimize public health policies in the course of the COVID-19 pandemic |
title_sort | control framework to optimize public health policies in the course of the covid-19 pandemic |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8239053/ https://www.ncbi.nlm.nih.gov/pubmed/34183727 http://dx.doi.org/10.1038/s41598-021-92636-8 |
work_keys_str_mv | AT pataroigorml acontrolframeworktooptimizepublichealthpoliciesinthecourseofthecovid19pandemic AT oliveirajulianef acontrolframeworktooptimizepublichealthpoliciesinthecourseofthecovid19pandemic AT moratomarcelom acontrolframeworktooptimizepublichealthpoliciesinthecourseofthecovid19pandemic AT amadalanas acontrolframeworktooptimizepublichealthpoliciesinthecourseofthecovid19pandemic AT ramospabloip acontrolframeworktooptimizepublichealthpoliciesinthecourseofthecovid19pandemic AT pereirafelipeac acontrolframeworktooptimizepublichealthpoliciesinthecourseofthecovid19pandemic AT silvamateuss acontrolframeworktooptimizepublichealthpoliciesinthecourseofthecovid19pandemic AT jorgedanielcp acontrolframeworktooptimizepublichealthpoliciesinthecourseofthecovid19pandemic AT andraderobertofs acontrolframeworktooptimizepublichealthpoliciesinthecourseofthecovid19pandemic AT barretomauriciol acontrolframeworktooptimizepublichealthpoliciesinthecourseofthecovid19pandemic AT costamarcusamericanoda acontrolframeworktooptimizepublichealthpoliciesinthecourseofthecovid19pandemic AT pataroigorml controlframeworktooptimizepublichealthpoliciesinthecourseofthecovid19pandemic AT oliveirajulianef controlframeworktooptimizepublichealthpoliciesinthecourseofthecovid19pandemic AT moratomarcelom controlframeworktooptimizepublichealthpoliciesinthecourseofthecovid19pandemic AT amadalanas controlframeworktooptimizepublichealthpoliciesinthecourseofthecovid19pandemic AT ramospabloip controlframeworktooptimizepublichealthpoliciesinthecourseofthecovid19pandemic AT pereirafelipeac controlframeworktooptimizepublichealthpoliciesinthecourseofthecovid19pandemic AT silvamateuss controlframeworktooptimizepublichealthpoliciesinthecourseofthecovid19pandemic AT jorgedanielcp controlframeworktooptimizepublichealthpoliciesinthecourseofthecovid19pandemic AT andraderobertofs controlframeworktooptimizepublichealthpoliciesinthecourseofthecovid19pandemic AT barretomauriciol controlframeworktooptimizepublichealthpoliciesinthecourseofthecovid19pandemic AT costamarcusamericanoda controlframeworktooptimizepublichealthpoliciesinthecourseofthecovid19pandemic |