Cargando…

A control framework to optimize public health policies in the course of the COVID-19 pandemic

The SARS-CoV-2 pandemic triggered substantial economic and social disruptions. Mitigation policies varied across countries based on resources, political conditions, and human behavior. In the absence of widespread vaccination able to induce herd immunity, strategies to coexist with the virus while m...

Descripción completa

Detalles Bibliográficos
Autores principales: Pataro, Igor M. L., Oliveira, Juliane F., Morato, Marcelo M., Amad, Alan A. S., Ramos, Pablo I. P., Pereira, Felipe A. C., Silva, Mateus S., Jorge, Daniel C. P., Andrade, Roberto F. S., Barreto, Mauricio L., Costa, Marcus Americano da
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8239053/
https://www.ncbi.nlm.nih.gov/pubmed/34183727
http://dx.doi.org/10.1038/s41598-021-92636-8
_version_ 1783715005268492288
author Pataro, Igor M. L.
Oliveira, Juliane F.
Morato, Marcelo M.
Amad, Alan A. S.
Ramos, Pablo I. P.
Pereira, Felipe A. C.
Silva, Mateus S.
Jorge, Daniel C. P.
Andrade, Roberto F. S.
Barreto, Mauricio L.
Costa, Marcus Americano da
author_facet Pataro, Igor M. L.
Oliveira, Juliane F.
Morato, Marcelo M.
Amad, Alan A. S.
Ramos, Pablo I. P.
Pereira, Felipe A. C.
Silva, Mateus S.
Jorge, Daniel C. P.
Andrade, Roberto F. S.
Barreto, Mauricio L.
Costa, Marcus Americano da
author_sort Pataro, Igor M. L.
collection PubMed
description The SARS-CoV-2 pandemic triggered substantial economic and social disruptions. Mitigation policies varied across countries based on resources, political conditions, and human behavior. In the absence of widespread vaccination able to induce herd immunity, strategies to coexist with the virus while minimizing risks of surges are paramount, which should work in parallel with reopening societies. To support these strategies, we present a predictive control system coupled with a nonlinear model able to optimize the level of policies to stop epidemic growth. We applied this system to study the unfolding of COVID-19 in Bahia, Brazil, also assessing the effects of varying population compliance. We show the importance of finely tuning the levels of enforced measures to achieve SARS-CoV-2 containment, with periodic interventions emerging as an optimal control strategy in the long-term.
format Online
Article
Text
id pubmed-8239053
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-82390532021-07-06 A control framework to optimize public health policies in the course of the COVID-19 pandemic Pataro, Igor M. L. Oliveira, Juliane F. Morato, Marcelo M. Amad, Alan A. S. Ramos, Pablo I. P. Pereira, Felipe A. C. Silva, Mateus S. Jorge, Daniel C. P. Andrade, Roberto F. S. Barreto, Mauricio L. Costa, Marcus Americano da Sci Rep Article The SARS-CoV-2 pandemic triggered substantial economic and social disruptions. Mitigation policies varied across countries based on resources, political conditions, and human behavior. In the absence of widespread vaccination able to induce herd immunity, strategies to coexist with the virus while minimizing risks of surges are paramount, which should work in parallel with reopening societies. To support these strategies, we present a predictive control system coupled with a nonlinear model able to optimize the level of policies to stop epidemic growth. We applied this system to study the unfolding of COVID-19 in Bahia, Brazil, also assessing the effects of varying population compliance. We show the importance of finely tuning the levels of enforced measures to achieve SARS-CoV-2 containment, with periodic interventions emerging as an optimal control strategy in the long-term. Nature Publishing Group UK 2021-06-28 /pmc/articles/PMC8239053/ /pubmed/34183727 http://dx.doi.org/10.1038/s41598-021-92636-8 Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Pataro, Igor M. L.
Oliveira, Juliane F.
Morato, Marcelo M.
Amad, Alan A. S.
Ramos, Pablo I. P.
Pereira, Felipe A. C.
Silva, Mateus S.
Jorge, Daniel C. P.
Andrade, Roberto F. S.
Barreto, Mauricio L.
Costa, Marcus Americano da
A control framework to optimize public health policies in the course of the COVID-19 pandemic
title A control framework to optimize public health policies in the course of the COVID-19 pandemic
title_full A control framework to optimize public health policies in the course of the COVID-19 pandemic
title_fullStr A control framework to optimize public health policies in the course of the COVID-19 pandemic
title_full_unstemmed A control framework to optimize public health policies in the course of the COVID-19 pandemic
title_short A control framework to optimize public health policies in the course of the COVID-19 pandemic
title_sort control framework to optimize public health policies in the course of the covid-19 pandemic
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8239053/
https://www.ncbi.nlm.nih.gov/pubmed/34183727
http://dx.doi.org/10.1038/s41598-021-92636-8
work_keys_str_mv AT pataroigorml acontrolframeworktooptimizepublichealthpoliciesinthecourseofthecovid19pandemic
AT oliveirajulianef acontrolframeworktooptimizepublichealthpoliciesinthecourseofthecovid19pandemic
AT moratomarcelom acontrolframeworktooptimizepublichealthpoliciesinthecourseofthecovid19pandemic
AT amadalanas acontrolframeworktooptimizepublichealthpoliciesinthecourseofthecovid19pandemic
AT ramospabloip acontrolframeworktooptimizepublichealthpoliciesinthecourseofthecovid19pandemic
AT pereirafelipeac acontrolframeworktooptimizepublichealthpoliciesinthecourseofthecovid19pandemic
AT silvamateuss acontrolframeworktooptimizepublichealthpoliciesinthecourseofthecovid19pandemic
AT jorgedanielcp acontrolframeworktooptimizepublichealthpoliciesinthecourseofthecovid19pandemic
AT andraderobertofs acontrolframeworktooptimizepublichealthpoliciesinthecourseofthecovid19pandemic
AT barretomauriciol acontrolframeworktooptimizepublichealthpoliciesinthecourseofthecovid19pandemic
AT costamarcusamericanoda acontrolframeworktooptimizepublichealthpoliciesinthecourseofthecovid19pandemic
AT pataroigorml controlframeworktooptimizepublichealthpoliciesinthecourseofthecovid19pandemic
AT oliveirajulianef controlframeworktooptimizepublichealthpoliciesinthecourseofthecovid19pandemic
AT moratomarcelom controlframeworktooptimizepublichealthpoliciesinthecourseofthecovid19pandemic
AT amadalanas controlframeworktooptimizepublichealthpoliciesinthecourseofthecovid19pandemic
AT ramospabloip controlframeworktooptimizepublichealthpoliciesinthecourseofthecovid19pandemic
AT pereirafelipeac controlframeworktooptimizepublichealthpoliciesinthecourseofthecovid19pandemic
AT silvamateuss controlframeworktooptimizepublichealthpoliciesinthecourseofthecovid19pandemic
AT jorgedanielcp controlframeworktooptimizepublichealthpoliciesinthecourseofthecovid19pandemic
AT andraderobertofs controlframeworktooptimizepublichealthpoliciesinthecourseofthecovid19pandemic
AT barretomauriciol controlframeworktooptimizepublichealthpoliciesinthecourseofthecovid19pandemic
AT costamarcusamericanoda controlframeworktooptimizepublichealthpoliciesinthecourseofthecovid19pandemic