Cargando…

Remnant Muscle Preservation on Hamstring Tendon Autograft During ACL Reconstruction Promotes Volumetric Increase With Biological and Regenerative Potential

BACKGROUND: The removal of all adherent muscle tissue from the hamstring graft during anterior cruciate ligament reconstruction (ACLR) is common practice. However, there is a paucity of research to justify this removal or evaluate its biological implications. PURPOSE/HYPOTHESIS: The purpose of this...

Descripción completa

Detalles Bibliográficos
Autores principales: Funchal, Luis Fernando Z., Ortiz, Rafael, Jimenez, Andrew, Funchal, Gabriella Di Giunta, Cohen, Moises, Astur, Diego Costa
Formato: Online Artículo Texto
Lenguaje:English
Publicado: SAGE Publications 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8239340/
https://www.ncbi.nlm.nih.gov/pubmed/34250161
http://dx.doi.org/10.1177/2325967121990016
Descripción
Sumario:BACKGROUND: The removal of all adherent muscle tissue from the hamstring graft during anterior cruciate ligament reconstruction (ACLR) is common practice. However, there is a paucity of research to justify this removal or evaluate its biological implications. PURPOSE/HYPOTHESIS: The purpose of this study was to (1) evaluate the histological characteristics of the myotendinous muscle tissue harvested from hamstring tendons, (2) compare the final diameter of the prepared graft before and after the removal of the remnant musculature, and (3) evaluate patients who were treated with and without preservation of the graft-adhered muscle. The hypothesis was that the adherent musculature of the graft would have cells that could contribute to graft incorporation and revascularization, assist in the proprioceptive capacity of the neoligament, and increase the graft’s diameter. STUDY DESIGN: Cohort study; Level of evidence, 3. METHODS: We divided 84 patients into 2 groups: group 1 underwent ACLR using hamstring tendon autograft with adherent musculature, and group 2 underwent ACLR using hamstring tendon autograft stripped of its remnant muscle. All patients had minimum 2-year follow-up. The muscle harvested from the graft in group 2 was submitted for histological examination, and the graft diameter before and after muscle removal was compared. The Tegner activity scale and Lysholm scores were determined preoperatively and at 12 and 24 months postoperatively. RESULTS: There was a significant difference in graft diameter between groups. The evaluation of the graft diameter in group 2 showed a decrease of 11.52% after removal of muscle tissue from the tendon graft. Patients from group 1 had better Tegner and Lysholm scores (mean ± SD) after 12 months (Tegner, 8.03 vs 7 [P = .004]; Lysholm, 95.48 ± 1.2 vs 87.54 ± 3.21 [P = .002]) and better Lysholm scores after 24 months (95.76 ± 2.1 vs 89.32 ± 2.47; P = .002). The muscle tissue of the analyzed fragments presented a pattern with fibrous tissue beams, invaginating regularly and sequentially from the myotendinous junction into the muscles. CONCLUSION: Preserving the muscle tissue on tendon grafts promoted a volumetric increase in the final autograft diameter and demonstrated biological and regenerative potential. Patients who underwent ACLR using the tendon with the muscle attached had better functional scores at 2-year follow-up as compared with patients treated using the tendon with the muscle removed.