Cargando…
Machine learning classification of texture features of MRI breast tumor and peri-tumor of combined pre- and early treatment predicts pathologic complete response
PURPOSE: This study used machine learning classification of texture features from MRI of breast tumor and peri-tumor at multiple treatment time points in conjunction with molecular subtypes to predict eventual pathological complete response (PCR) to neoadjuvant chemotherapy. MATERIALS AND METHOD: Th...
Autores principales: | Hussain, Lal, Huang, Pauline, Nguyen, Tony, Lone, Kashif J., Ali, Amjad, Khan, Muhammad Salman, Li, Haifang, Suh, Doug Young, Duong, Tim Q. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8240261/ https://www.ncbi.nlm.nih.gov/pubmed/34183038 http://dx.doi.org/10.1186/s12938-021-00899-z |
Ejemplares similares
-
Machine-learning classification of texture features of portable chest X-ray accurately classifies COVID-19 lung infection
por: Hussain, Lal, et al.
Publicado: (2020) -
Recognition of brain tumors in MRI images using texture analysis
por: Elshaikh, Buthayna G., et al.
Publicado: (2021) -
Machine learning with textural analysis of longitudinal multiparametric MRI and molecular subtypes accurately predicts pathologic complete response in patients with invasive breast cancer
por: Syed, Aaquib, et al.
Publicado: (2023) -
Prediction of transient tumor enlargement using MRI tumor texture after radiosurgery on vestibular schwannoma
por: Langenhuizen, Patrick P. J. H., et al.
Publicado: (2020) -
Non-Hodgkin lymphoma response evaluation with MRI texture classification
por: Harrison, Lara CV, et al.
Publicado: (2009)